channel-pruning
Channel Pruning 项目开发了一种通道剪枝技术,用于加速深度神经网络。该技术显著提高了 VGG-16、ResNet-50 等模型的推理速度,同时保持了较高准确率。项目还包含针对 Faster R-CNN 的剪枝方法,为计算机视觉任务提供了高效解决方案。具体实现了 VGG-16 模型 4 倍和 5 倍的加速,ResNet-50 模型 2 倍加速,以及 Faster R-CNN 2 倍和 4 倍加速。这些优化后的模型在 ImageNet 分类和目标检测任务上仍保持了较高性能。项目提供了代码和预训练模型,方便研究者复现实验结果。