#CLIP ViT-B/32
CLIP-ViT-B-32-roberta-base-laion2B-s12B-b32k - 零样本图像识别与跨模态检索应用
Github开源项目模型图像分类模型评估HuggingfaceOpenCLIP训练数据CLIP ViT-B/32
该模型基于OpenCLIP,并利用LAION-5B中的LAION-2B英文子集进行训练,实现了有效的零样本图像分类和跨模态检索。在ImageNet、MSCOCO和Flickr30k测试集上的表现优于基线,适用于图像分类和生成等任务。训练过程中采用32k批次大小处理12B训练样本,并通过VTAB+、COCO和Flickr等数据集进行评估。
CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k - 具备零样本学习与多语言支持的图像模型
Github开源项目模型图像分类Huggingface零样本学习LAION-5B多语言性能CLIP ViT-B/32
该模型基于LAION-5B数据集和OpenCLIP技术,能够进行零样本图像分类和图像-文本检索。通过结合CLIP ViT-B/32和xlm roberta,这一模型在各种图像任务中显示出较高性能。同时,其多语言能力经验证,可提升imagenet1k等多语言数据集上的表现,尤其在意大利语和日语测试中效果显著。依托于高效的OpenCLIP训练,模型在mscooco和flickr30k数据集上有较大性能提升,是图像生成与分类的可靠选择。