pytorch_connectomics
PyTorch Connectomics是一个面向神经科学领域的开源深度学习框架,专门用于处理电子显微镜采集的大脑图像数据。该框架支持连接组学中的自动和半自动语义及实例分割,提供多任务学习、主动学习和半监督学习功能。它采用分布式和混合精度优化技术,能高效处理大规模数据集。框架包含多种编码器-解码器架构,如定制3D UNet和特征金字塔网络模型,并提供全面的体积数据增强功能。由哈佛大学视觉计算组维护,PyTorch Connectomics致力于加速大脑神经连接图谱的重建过程。