Convolutional-KANs
Convolutional-KANs项目将Kolmogorov-Arnold网络(KAN)架构应用于卷积层,引入可学习的非线性激活函数。初步实验表明,KAN卷积在保持准确性的同时,可能比传统卷积网络更具参数效率。该项目正在更复杂的数据集上进行进一步测试,以评估KAN卷积的实际性能。这一创新为计算机视觉领域开辟了新的研究方向。