#对抗攻击
探索PyTorch对抗性攻击:Torchattacks库详解
2 个月前
相关项目
adversarial-attacks-pytorch
Torchattacks是一个专为PyTorch用户设计的对抗攻击库,提供类似PyTorch的接口和函数,便于生成对抗样本。支持包括FGSM、PGD、CW和AutoAttack在内的多种攻击方法,并附有详细的使用案例和安装指南,适用于机器学习和深度学习模型的安全性测试和对抗训练效果的提升。
DeepRobust
DeepRobust是一个基于PyTorch的开源库,专注于图像和图神经网络的对抗性攻击与防御。它提供多种攻防算法,支持MNIST、CIFAR10等数据集,可与PyTorch Geometric集成。该库适用于对抗性机器学习研究,也为构建鲁棒深度学习模型提供工具。DeepRobust支持大规模图如OGB-ArXiv的攻击,并包含节点嵌入攻击和受害模型。它还提供图像预处理方法APE-GAN,支持ImageNet数据集,新增UGBA后门攻击和PRBCD可扩展攻击算法。库中包含MedianGCN、AirGNN等鲁棒模型,以及用于转换PyTorch Geometric和DeepRobust数据集的工具,成为全面的对抗性机器学习研究平台。