#跨注意力
Attend-and-Excite: 基于注意力的语义引导技术助力文本到图像生成
3 个月前
相关项目
T-GATE
TGATE项目研究了在文本到图像扩散模型中的时序注意机制。研究发现,交叉注意输出在几步推理后可以收敛到固定点,通过采用缓存和重用这些输出的方式,无需额外训练,即可提升现有模型的运行速度10%–50%。TGATE易于集成,提供快速图像生成,适用于CNN U-Net、Transformer和Consistency Model。
Attend-and-Excite
研究表明,当前的文本到图像生成模型在特定语义表达方面存在不足。为解决这一问题,提出了基于注意力机制的语义护理(Generative Semantic Nursing, GSN)方法。此方法通过在推理过程中调整模型的交叉注意单元,使生成的图像更准确地反映输入文本中的多个对象和属性。相比其他方法,该技术在各种文本提示下表现出更高的语义忠实度,并提供详细的实现步骤和代码,以便研究人员进行实验与复现。