#DeBERTa-v3-base
deberta-v3-base-prompt-injection-v2 - DeBERTa-v3微调模型实现高精度提示注入检测
语言模型Huggingface模型prompt injectionGithub开源项目LLM安全文本分类DeBERTa-v3-base
deberta-v3-base-prompt-injection-v2是一个基于DeBERTa-v3-base微调的模型,专注于检测和分类英语提示注入攻击。模型在后训练数据集上达到95.25%的准确率,可有效分类输入是否存在注入。该模型由Protect AI开发,利用多个公开数据集训练而成,旨在提升语言模型应用的安全性。需注意的是,模型不适用于越狱攻击检测和非英语提示处理。
deberta-v3-base-tasksource-nli - DeBERTa-v3多任务学习模型用于零样本分类与推理
模型多任务学习DeBERTa-v3-base零样本分类开源项目Huggingface自然语言推理tasksourceGithub
该模型基于DeBERTa-v3-base架构,通过多任务学习在600多个任务上微调而来。模型在零样本验证中表现优异,适用于零样本分类、自然语言推理等多种任务。它支持灵活的分类和推理pipeline,并可通过tasksource-adapters轻松访问数百个预训练任务。在IBM模型回收评估中排名第一,显示出广泛的应用前景。