#DeiT

deit-small-patch16-224 - 数据高效的图像Transformer模型,用于精炼图像分类
图像分类DeiTImageNet-1kHuggingfaceGithub开源项目模型预训练Vision Transformer
Data-efficient Image Transformer(DeiT)小型模型在ImageNet-1k上经过预训练和微调。该模型通过高效的预训练方法和识别精确的标签蒸馏技术实现了性能与效率的平衡。DeiT-small在ImageNet中实现79.9%的top-1准确率,支持PyTorch平台,适合图像分类任务,并可以通过ViTModel或ViTForImageClassification进行应用。
deit_small_patch16_224.fb_in1k - DeiT架构图像分类模型 基于ImageNet-1k训练的高效Transformer
计算机视觉神经网络开源项目DeiT深度学习模型图像分类GithubHuggingface
DeiT小型模型是一种基于Transformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用注意力蒸馏技术,拥有2210万参数,适用于224x224像素图像输入。除图像分类外,它还可用于特征提取。模型通过timm库提供预训练权重,便于加载和推理。其数据效率和蒸馏技术使其在计算机视觉领域表现出色。
deit_tiny_patch16_224.fb_in1k - 高效数据处理的DeiT图像分类和特征提取模型
ImageNetTransformerDeiT图像分类开源项目timm模型HuggingfaceGithub
DeiT图像分类模型经过在ImageNet-1k数据集上的训练,通过注意力机制提高数据处理效率。它的紧凑架构具有5.7百万参数和1.3 GMACs,适用于224x224像素图像,可用于图像分类和嵌入生成。此项目具备广泛的库支持,易于集成,是研究者获取高效图像处理能力的理想工具。
deit-tiny-patch16-224 - 高效小型视觉Transformer模型用于图像分类
ImageNet图像处理Github开源项目图像分类HuggingfaceDeiT深度学习模型
DeiT-tiny-patch16-224是一个在ImageNet-1k数据集上训练的高效视觉Transformer模型。该模型仅有5M参数,却在ImageNet top-1分类准确率上达到72.2%。它可处理224x224分辨率的图像输入,输出1000个ImageNet类别的预测结果,适用于各种图像分类任务。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号