#DenseNet
相关项目
DenseNet
DenseNet通过每层与其他层的直接连接,提升图像识别准确性并减少参数和计算量。最新版本内存效率更高,支持CIFAR和ImageNet数据集,提供PyTorch、TensorFlow、Keras等深度学习框架的实现代码,适合研究和应用。
densenet201.tv_in1k
DenseNet201是一个在ImageNet-1k数据集上训练的图像分类模型。该模型拥有2000万参数,支持224x224像素输入,适用于图像分类、特征图提取和图像嵌入等任务。其密集连接的卷积网络结构不仅提供准确的分类结果,还能生成丰富的特征表示。模型通过timm库提供预训练权重,便于快速部署和使用。
densenet121.ra_in1k
DenseNet121是一个在ImageNet-1k数据集上预训练的图像分类模型,采用RandAugment数据增强策略优化。模型参数量为800万,支持多种输入分辨率,可用于图像分类、特征提取和embedding生成等计算机视觉任务。