#差分隐私
opacus - 简化PyTorch差分隐私训练流程
Github开源项目PyTorch机器学习Opacus差分隐私隐私引擎
Opacus库简化了在PyTorch模型中实现差分隐私训练的流程,只需最少量的代码修改,且对训练性能影响小。用户可以实时在线监控隐私预算的使用情况。Opacus适用于机器学习从业者和差分隐私研究人员,提供简便的安装方式和详细的教程,帮助用户快速上手。丰富的使用案例和迁移指南使其成为探索差分隐私领域的重要工具。
privacy - 用于机器学习模型差分隐私训练的 Python 库
Github开源项目机器学习Python库差分隐私TensorFlow Privacy梯度裁剪
TensorFlow Privacy 是一个用于机器学习模型差分隐私训练的 Python 库。它实现了 TensorFlow 优化器,并提供计算隐私保证的教程和分析工具。该库兼容 TensorFlow 2.x,支持基于 Keras 的估计器。TensorFlow Privacy 持续更新,最新版本分为两个 PyPI 包:用于差分隐私模型训练的 tensorflow-privacy 和用于经验隐私测试的 tensorflow-empirical-privacy。
programming-dp - 差分隐私编程实践指南
Github开源项目编程差分隐私GitHub PagesJupyter BookLaTeX
Programming Differential Privacy是一个开源项目,提供在线电子书资源,专注于差分隐私编程技术的教育。该项目结合理论解释和实际代码示例,帮助开发者和研究者理解并应用差分隐私概念。项目还包含详细的构建说明,便于读者实践学习。适合对数据隐私保护和安全技术感兴趣的技术人员参考。
smartnoise-sdk - 差分隐私数据分析与合成工具包
Github开源项目SQL查询合成数据差分隐私数据保护SmartNoise SDK
SmartNoise SDK是一个专注于表格数据差分隐私的开源工具包,包含smartnoise-sql和smartnoise-synth两个主要组件。前者用于执行差分隐私SQL查询,后者用于生成差分隐私合成数据。该SDK支持MWEM和PATE-CTGAN等隐私保护算法,适用于Python 3.7及以上版本。SmartNoise SDK为研究人员和数据科学家提供了在保护个人隐私的同时进行数据分析和合成的能力,并配备详细文档和示例代码以便快速上手。