diffusion-classifier
本项目展示了如何利用大型文本图像生成模型如Stable Diffusion进行零样本分类,无需额外训练。该生成分类方法在多项基准测试中表现优越,超过其他扩散模型的知识提取方法。通过从ImageNet的类条件扩散模型中提取标准分类器,该模型即使在仅使用弱增强的情况下也表现出强大的分类性能和分布转移的稳健性。本研究推进了生成模型在下游任务中的应用,是对多模态组合推理能力的重要探索。