#ESM-2
esm2_t30_150M_UR50D - ESM-2系列中的中型蛋白质序列分析模型
生物信息学神经网络Huggingface模型语言建模GithubESM-2开源项目蛋白质模型
esm2_t30_150M_UR50D是ESM-2系列中的中型模型,具有30层结构和1.5亿参数。这个基于掩码语言建模的蛋白质模型适用于多种蛋白质序列输入任务的微调。模型在性能和资源消耗间达到平衡,为蛋白质序列分析提供了实用的工具。
esm2_t12_35M_UR50D - ESM-2系列中的轻量级蛋白质语言模型
模型ESM-2蛋白质模型掩码语言建模人工智能Github生物技术Huggingface开源项目
esm2_t12_35M_UR50D是ESM-2系列中的轻量级蛋白质语言模型,采用12层结构,包含3500万个参数。该模型基于掩码语言建模训练,适用于多种蛋白质序列相关任务的微调。作为ESM-2系列中的小型模型,它在保持性能的同时大幅降低了资源需求,为蛋白质研究提供了高效工具。此模型特别适合资源受限环境,在各类蛋白质序列分析中展现出良好的应用价值。
esm2_t48_15B_UR50D - 大规模蛋白质语言模型用于多样化蛋白质序列分析
生物信息学Huggingface模型深度学习GithubESM-2开源项目自然语言处理蛋白质模型
作为ESM-2系列中参数量最大的蛋白质语言模型,esm2_t48_15B_UR50D拥有480亿参数。该模型采用掩码语言建模方法训练,可应用于多种蛋白质序列分析任务。虽然模型性能优异,但也需要较高的计算资源。研究人员可利用该模型进行蛋白质功能预测、结构分析等研究,为蛋白质科学领域带来新的突破。