#Flash Attention
contrastors - 对比学习工具包
contrastors对比学习Nomic EmbedFlash AttentionBERTGithub开源项目
contrastors 是一个高效的对比学习工具包,支持多GPU和大批量训练优化。支持通过Huggingface快速加载常见模型如BERT和GPTNeoX,适用于处理复杂的语言和视觉嵌入任务。
gpt-neox - 大规模语言模型训练库,支持多系统和硬件环境
GPT-NeoXEleutherAIDeepSpeedMegatron Language ModelFlash AttentionGithub开源项目
GPT-NeoX是EleutherAI开发的库,专注于在GPU上训练大规模语言模型。它基于NVIDIA的Megatron,并结合了DeepSpeed技术,提供前沿的架构创新和优化,支持多种系统和硬件环境。广泛应用于学术界、工业界和政府实验室,支持AWS、CoreWeave、ORNL Summit等多个平台。主要功能包括分布式训练、3D并行、旋转和嵌入技术,以及与Hugging Face等开源库的无缝集成。
flash-attention-minimal - 简化Flash Attention的CUDA和PyTorch最小化实现
Flash AttentionCUDAPyTorch注意力机制GPU加速Github开源项目
flash-attention-minimal是一个开源项目,使用CUDA和PyTorch对Flash Attention进行最小化实现。项目仅用约100行代码完成前向传播,遵循原始论文符号表示,为CUDA初学者提供简明教程。通过与手动注意力机制的性能对比,展示了显著的速度提升。尽管目前存在一些限制,如缺少反向传播和固定块大小,但该项目为理解Flash Attention核心概念提供了有价值的参考资料。
相关文章