#梯度提升

catboost - 梯度提升和分类特征支持的机器学习工具
CatBoost机器学习梯度提升决策树Apache SparkGithub开源项目
CatBoost是一种基于决策树的梯度提升算法,具有高准确性和速度优势,能够处理数值和分类特征。它提供快速的GPU训练、直观的可视化工具和与Apache Spark的分布式训练支持,适用于多种应用场景。通过官方文档和教程,用户可以快速上手,并通过参数调优和交叉验证进一步优化模型性能。
xgboost - 高效灵活可扩展的梯度提升算法库
XGBoost梯度提升机器学习分布式计算数据科学Github开源项目
XGBoost是一款高性能的梯度提升算法库,专为效率、灵活性和可扩展性而设计。它能快速准确地处理大规模数据集,解决各类机器学习问题。XGBoost支持多种分布式环境,可处理超十亿样本的数据。作为开源项目,XGBoost不断通过社区贡献来提升性能和扩展功能。
Py-Boost - Python实现的GPU加速梯度提升决策树库
梯度提升GPU加速多输出训练ONNX兼容Python库Github开源项目
Py-Boost是一个Python实现的GPU加速梯度提升决策树库。该项目提供简洁接口,支持GPU训练和推理,易于定制。特色功能包括SketchBoost算法高效处理多输出任务,以及ONNX格式支持。Py-Boost为研究和开发人员提供了探索梯度提升方法的灵活工具,同时保持了较高的运行效率。
LightGBM - 高效梯度提升框架 支持大规模数据并行学习
LightGBM梯度提升机器学习决策树数据分析Github开源项目
LightGBM是一个高效的梯度提升框架,采用树形学习算法。它具有训练速度快、内存消耗低、准确性高的特点,支持并行、分布式和GPU学习,可处理大规模数据。这个开源项目在机器学习竞赛中应用广泛,在公开数据集上的表现优于多个现有框架。LightGBM为用户提供了详细文档和丰富示例,适用于多种机器学习任务。
LightGBMLSS - LightGBM概率建模扩展框架 实现全条件分布预测
LightGBMLSS概率建模分布预测梯度提升机器学习Github开源项目
LightGBMLSS作为LightGBM的扩展框架,实现了单变量目标全条件分布的建模和预测。该框架支持多种分布类型,包括连续、离散和混合分布,并具备归一化流和混合密度等先进功能,能够有效处理复杂的多模态数据。LightGBMLSS自动推导梯度和海森矩阵,集成了超参数优化和可解释性分析功能,同时保持与LightGBM的完全兼容。这一框架为概率建模提供了全面而灵活的解决方案。