相关项目
ml-aim
AIM项目开发了一系列采用自回归生成目标预训练的视觉模型。研究发现,图像特征的自回归预训练呈现出与大型语言模型类似的扩展性。该项目能够将模型参数轻松扩展到数十亿级,并能有效处理大规模未筛选的图像数据。AIM提供多种预训练模型,兼容PyTorch、MLX和JAX等多个框架,为计算机视觉领域的研究与应用提供了有力支持。
vit_small_patch14_reg4_dinov2.lvd142m
该Vision Transformer (ViT) 图像特征模型通过自监督学习进行预训练,基于LVD-142M数据集并采用DINOv2方法。模型专为图像分类和特征提取设计,包含22.1M参数和29.6 GMAC的运算能力。其注册方法增强了处理518x518像素图像的效果,DINOv2技术有助于无监督视觉特征学习。此模型在图像嵌入应用中表现优异,并支持多种视觉分析与研究。用户可使用timm库简单调用和部署模型,适合多种机器学习场景。