#LLM加速
booster - 大规模GPT模型部署和高效推理加速器
BoosterAI绘图LLM加速GPTGolangGithub开源项目
Large Model Booster利用Golang和C++技术构建高性能且可扩展的LLM推理加速器,适用于生产环境中的GPTs大规模部署和独立模型实验。支持多种现代CPU和GPU,包括Intel、AMD、ARM64、Apple Silicon及Nvidia CUDA等,支持大模型切分及FP16/FP32和量化版本。涵盖LLaMA、Mistral、Gemma等主流LLM架构,提供SOTA Janus Sampling实现。项目提供详细的编译到部署指南,并支持OpenAI和Ollama的兼容API端点。
self-speculative-decoding - 无损加速大型语言模型的创新推理方案
Self-Speculative DecodingLLM加速推理优化草稿验证层跳过Github开源项目
Self-Speculative Decoding是ACL 2024的一个开源项目,提出了一种无损加速大型语言模型(LLMs)的新方法。该技术通过草稿生成和验证两个阶段,在不增加额外训练和内存的情况下提高LLM推理速度。这一创新方案保证了输出质量和模型兼容性,为LLM加速提供了高效且易于实施的解决方案。