MedSegDiff
MedSegDiff是一个创新的医学图像分割框架,基于扩散概率模型(DPM)。该方法通过添加高斯噪声并学习逆向去噪过程来实现分割。利用原始图像作为条件,MedSegDiff从随机噪声生成多个分割图,并进行集成获得最终结果。这种方法能够捕捉医学图像中的不确定性,在多个基准测试中表现优异。MedSegDiff支持多种医学图像分割任务,包括皮肤黑色素瘤和脑肿瘤分割等,并提供详细使用说明和示例。