#microsoft/swin-tiny-patch4-window7-224
cards_bottom_right_swin-tiny-patch4-window7-224-finetuned-v2 - 基于Swin Transformer图像分类模型实现60.79%精度
Github机器学习优化图像分类Huggingface深度学习模型训练开源项目模型microsoft/swin-tiny-patch4-window7-224
这是一个基于microsoft/swin-tiny-patch4-window7-224架构的图像分类模型。经过30轮训练迭代,模型采用128批量大小,5e-05学习率,结合Adam优化器与线性学习率调度策略。模型性能从初始的41.56%提升至60.79%,实现稳定的分类效果。
cards_bottom_left_swin-tiny-patch4-window7-224-finetuned-dough_100_epochs - 基于 Swin Transformer 的图像分类模型实现
机器学习人工智能Github图像分类Huggingface数据训练开源项目模型microsoft/swin-tiny-patch4-window7-224
这是一个基于 Microsoft Swin-Tiny 的图像分类模型。模型经过100轮训练,使用Adam优化器和线性学习率调度,batch size为128,在测试集达到59.47%准确率。该模型结合了Transformer架构与图像处理技术,可用于图像分类任务。模型采用了先进的深度学习技术,通过对大量图像数据的学习,提高了分类的准确性和效率。适用于各种需要自动化图像分类的应用场景。