#MoE

mixtral-offloading - Mixtral-8x7B模型高效推理的实现方法
Mixtral-8x7BHQQMoEGPUCPUGithub开源项目
该项目实现了Mixtral-8x7B模型的高效推理,使用混合量化和MoE卸载策略。通过HQQ量化方案分别处理注意力层和专家层,使模型适应GPU和CPU内存。每层的专家单独卸载并在需要时重新加载到GPU,活跃专家存储在LRU缓存中以减少GPU-RAM通信。更多技术细节和结果请参阅技术报告。
llama-moe - 专家混合模型,支持持续预训练
LLaMA-MoELLaMAMoESlimPajamaSheared LLaMAGithub开源项目
LLaMA-MoE是基于LLaMA和SlimPajama的开源专家混合模型。通过将LLaMA的FFN划分为稀疏专家并加入top-K门控,模型在优化的数据采样权重下进行持续预训练。特点包括轻量化、多种专家构建方法、多种门控策略和快速预训练,适合部署和研究。提供详细的安装指南和技术文档,帮助用户快速使用并评估模型性能。
tutel - Tutel:现代动态训练和推理的优化混合专家实现
TutelPytorchCUDAROCmMoEGithub开源项目
Tutel MoE是一种优化的专家混合实现,支持Pytorch、CUDA、ROCm和CPU等多种框架和硬件。它加速了动态训练和推理,并提供了多项功能更新,例如tensorcore选项、自定义专家扩展和NCCL超时设置。Tutel支持灵活配置和转换工具,适用于多节点和多GPU分布式模式。用户可以轻松集成和测试Tutel,并通过详尽的示例和文档获得技术支持。