相关项目
VanillaNet
VanillaNet是一种创新的神经网络架构,专注于简洁性和效率。它摒弃了复杂的快捷连接和注意力机制,仅使用较少的层数就能保持出色的性能。该项目展示了精简架构也能实现有效结果,为计算机视觉领域开辟了新路径,挑战了基础模型的现状。与主流模型相比,VanillaNet在保持相当性能的同时,具有更少的层数和更快的推理速度。
stable-cascade-prior
Stable Cascade Prior基于Würstchen架构,是一种高效的图像生成模型。其显著优势在于快速的推理速度和低昂的训练成本。依靠卓越的图像压缩能力,该模型可以将1024x1024图像压缩至24x24而不丢失细节,非常适合需要高效生成的场景。支持包括finetuning在内的多种扩展,并在提示对齐和美学质量上表现出色,适用于研究、教育、艺术设计等领域。访问其GitHub仓库,了解更多功能与使用案例。