#模型迁移
zett - 突破语言模型与分词器的兼容性限制
Github开源项目语言模型模型迁移超网络分词器Zero-Shot Tokenizer Transfer
ZeTT是一个创新的开源项目,旨在解决语言模型与分词器之间的兼容性问题。该项目通过零样本分词器迁移技术,使任何语言模型能够与任意分词器协同工作,几乎不需要额外训练。ZeTT提供多个预训练超网络,支持26种语言和代码处理。用户可以轻松将现有模型适配新的分词器,提升模型的通用性。此外,ZeTT还支持训练自定义超网络和迁移微调模型等高级功能,为自然语言处理研究提供新的可能性。
hub - 机器学习预训练模型分享与复用平台
Github开源项目机器学习模型TensorFlow HubKaggle Models模型迁移SavedModel
TensorFlow Hub是机器学习预训练模型的开源分享平台,现已迁移至Kaggle Models。平台提供SavedModel格式的TensorFlow 2模型和tensorflow_hub Python库,支持快速下载和重用模型。开发者可轻松获取预训练模型,加速机器学习项目开发。尽管迁移,tensorflow_hub库仍支持下载原有tfhub.dev模型。