#神经架构搜索

deephyper - 自动化机器学习任务的开源优化框架
DeepHyper机器学习自动化超参数优化神经架构搜索深度集成Github开源项目
DeepHyper是一个专注于自动化机器学习任务的Python开源框架。它提供了超参数优化、神经网络架构搜索和深度集成不确定性量化等功能。支持单机和分布式环境,适用于多种场景。DeepHyper简化了机器学习工作流程,为研究人员和开发者提供了强大的工具。项目包含详细文档、快速入门指南和活跃的社区支持,方便用户快速上手和深入使用。
Hypernets - 自动机器学习通用框架 支持多种算法与优化技术
HypernetsAutoML机器学习神经架构搜索超参数优化Github开源项目
Hypernets作为一个通用AutoML框架,能够为多种机器学习框架和库提供自动优化工具。它不仅支持TensorFlow、Keras、PyTorch等深度学习框架,还兼容scikit-learn、LightGBM、XGBoost等机器学习库。该框架集成了多种先进的单目标和多目标优化算法,并引入抽象搜索空间表示,满足超参数优化和神经架构搜索的需求,从而适应各类自动机器学习场景。
aw_nas - 模块化设计实现多种NAS算法
NAS框架神经架构搜索模块化可扩展硬件相关Github开源项目
aw_nas是一个模块化的神经架构搜索框架,实现了ENAS、DARTS等多种主流NAS算法。框架将NAS系统分解为搜索空间、控制器等组件,通过接口实现灵活组合。支持分类、检测等多种应用场景,并提供硬件分析接口。aw_nas采用插件机制便于扩展,已应用于容错性、对抗鲁棒性等研究方向。