#Neural Network
机器学习玩转Flappy Bird:神经网络与遗传算法的完美结合
NNoM: 面向微控制器的高级神经网络库
神经网络架构图绘制指南:从基础到高级
Machine-Learning-Flappy-Bird
该项目利用神经网络和遗传算法,实现了Flappy Bird游戏中小鸟的智能控制。项目采用HTML5、Phaser框架和Synaptic神经网络库,详细介绍了神经网络架构及基于进化算法的训练过程,包括选择、交叉和变异操作。通过该教程,用户可以学习如何创建并优化AI模型,使小鸟更好地避开障碍物。
nnom
NNoM 是为微控制器设计的高层次神经网络推理库,支持如 Inception、ResNet 和 DenseNet 等复杂结构,可一键部署 Keras 模型并提供用户友好的界面。其高性能后端选择和预编译功能确保了运行时零损耗,同时提供完整的评估工具如运行时分析和混淆矩阵。最新的 v0.4.x 版本新增了循环层(RNN)支持,并切换到更适合机器处理的结构化接口。与 TensorFlow Lite 和 STM32Cube.AI 的对比显示,NNoM 在推理时间和内存占用方面表现出色。
Neural-Network-Architecture-Diagrams
本项目使用diagrams.net(也叫draw.io)生成神经网络模型图,帮助用户直观理解不同的神经网络结构。涵盖YOLO v1、VGG-16、Autoencoder等实例,并欢迎贡献新的架构图。无论是初学者还是研究人员,皆可受益于提供的可视化示例。点击查看更多详情,了解如何分享架构图。
bumblebee
Bumblebee提供基于Axon的预训练神经网络模型,并集成Hugging Face模型,使机器学习任务变得简单。用户可通过Livebook和Phoenix轻松部署模型,支持CPU和GPU加速。其可加载和配置多种模型,在端到端的机器学习流水线中使用。官方文档和示例代码帮助用户深入了解Bumblebee的强大功能和实际应用。