相关项目
DQN-Atari-Agents
该项目提供了多种DQN算法的模块化训练方法,支持从原始像素或内存数据进行训练,并提高了训练速度。可选版本包括DDQN、Dueling DDQN等,可以通过组合Noisy layer、PER、多步目标等扩展为Rainbow算法。项目详细介绍了各类算法的使用方法及其在Atari和CartPole环境中的性能表现,适合用于研究和项目应用。
rainbow-is-all-you-need
本教程详细介绍了从DQN到Rainbow的深度强化学习方法,包含理论背景和面向对象的实现。每章节都可以在Colab上直接运行,适合快速学习。涵盖DQN、DoubleDQN、优先经验回放、对抗网络、噪声网络、分布式DQN和N步学习等多个主题,欢迎贡献改进建议或代码。