ddpm-cd
DDPM-CD项目提出了一种新的遥感变化检测方法,利用预训练的去噪扩散概率模型(DDPM)作为特征提取器。该方法首先在大量遥感图像上预训练DDPM模型,然后微调轻量级变化分类器,利用DDPM提取的特征和变化标签进行训练。实验表明,DDPM-CD在多个变化检测数据集上性能优异,展示了DDPM在变化检测中的有效性。
awesome-remote-sensing-change-detection
项目整理了遥感变化检测领域的关键资源,包括数据集、算法代码和竞赛信息。数据类型覆盖多光谱、高光谱和3D等,同时收录了传统方法和深度学习的实现代码。为该领域研究和应用提供全面参考,内容持续更新。