#ScienceQA
相关项目
chameleon-llm
Chameleon框架集成了多种工具,如视觉模型、Web搜索引擎和Python函数,提升了大型语言模型(LLMs)的推理能力。基于GPT-4的自然语言规划,Chameleon能够精准推理工具的组合和执行顺序。在ScienceQA任务中,Chameleon的准确率为86.54%,领先当前模型11.37%;在TabMWP任务中,整体准确率达98.78%。其模块化设计和灵活工具调用机制使其适用于各种复杂任务。
ScienceQA
ScienceQA项目结合多模态推理和思维链技术,开发了一个包含图像和文本的大规模科学问题数据集。通过利用GPT等先进语言模型,该项目在科学问题回答任务中实现了高达96%的准确率。ScienceQA已被多家机构采用,并在多个顶级学术会议上展示,展现了其在科学教育和人工智能领域的应用潜力。