相关项目
ECG-Heartbeat-Classification-seq2seq-model
项目利用序列到序列深度学习方法进行心电图心跳分类和心律失常检测,涵盖患者间和患者内两种情况。采用MIT-BIH心律失常数据库评估,提供预处理数据集和训练脚本。模型在分类任务中表现出色,为心脏病学研究提供新方法。代码开源,仅供学术和非商业使用。
mbart-large-50
mBART-50模型支持50种语言间的互译,基于序列到序列架构开发。该模型通过降噪预训练方法提升性能,包含句子重排和文本掩码等创新技术。作为mBART的扩展版本,覆盖英语、中文、日语在内的主要语言,可用于各类多语言自然语言处理任务。
rebel-large
REBEL是一个创新的关系抽取模型,基于BART架构,将关系抽取转化为序列生成任务。该模型支持200多种关系类型识别,采用端到端设计避免了多步骤处理的错误累积。在多个基准测试中表现优异,其多语言版本mREBEL进一步扩展了语言和实体类型支持范围。