#SNLI

roberta-base-snli - 基于SNLI数据集训练且F1分值达0.9的自然语言推理模型
SNLIRoBERTaGithub模型自然语言处理机器学习开源项目Huggingface模型训练
roberta-base-snli是一个经过SNLI数据集训练的自然语言推理模型。模型采用Adam优化器结合余弦学习率调度策略,以16的batch size和2e-05的学习率进行了4轮训练。在评估数据集上,模型达到了0.9004的F1得分。项目基于Transformers 4.21.1框架开发,能够有效完成自然语言推理相关任务。
nli-deberta-v3-xsmall - 使用DeBERTa模型实现自然语言推理与零样本分类
SNLI开源项目Cross-Encoderzero-shot分类模型HuggingfaceMultiNLIGithub自然语言推理
该模型通过Cross-Encoder技术训练,基于microsoft/deberta-v3-xsmall,实现自然语言推理及零样本分类。其使用SNLI和MultiNLI数据进行训练,表现为:SNLI测试集91.64%的准确率,MNLI错配集87.77%的准确率。模型能识别句对的矛盾、蕴涵和中立标签,支持Python和Transformers库的调用,便于在多场景中应用。详细信息请参阅文档以提升项目中的自然语言处理效果。
roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli - 基于RoBERTa-Large的多数据集自然语言推理模型
SNLIRoBERTa模型Github开源项目自然语言推理预训练模型MNLIHuggingface
基于RoBERTa-Large架构的自然语言推理模型,通过SNLI、MNLI、FEVER-NLI和ANLI等数据集训练而成。模型用于判断文本间的蕴含关系,输出包括推理(entailment)、中性(neutral)和矛盾(contradiction)三种类别。支持使用Transformers库进行API调用,可进行批量数据处理。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号