#timm

caformer_b36.sail_in22k_ft_in1k - CAFormer图像分类模型基于MetaFormer设计
timm图像分类Huggingface特征提取开源项目模型GithubImageNetCAFormer
CAFormer基于MetaFormer架构,支持由ImageNet-22k预训练和ImageNet-1k微调,旨在增强图像识别能力。拥有98.8M参数与23.2 GMACs,擅长处理224x224像素图像。通过TIMM库访问,这款图像分类/特征骨干模型能够提升图像理解及特征提取,适用于图像分类、特征提取和图像嵌入等多种视觉任务。
rexnet_150.nav_in1k - 高效的图像识别与特征提取
timmReXNet特征提取ImageNet-1k模型Github开源项目图像分类Huggingface
ReXNet是一款在ImageNet-1k数据集上预训练的图像分类模型,具有9.7M参数和0.9 GMACs,专为224x224尺寸图像设计。在timm库中实现模型调用,支持图像分类、特征地图提取及嵌入计算,堪称参数量与准确率之间的理想平衡,适用于深度学习研究和开发。
mobilenetv4_conv_small.e2400_r224_in1k - MobileNet-V4图像分类模型简介
Github模型ImageNetMobileNetV4开源项目图像分类timmPyTorchHuggingface
MobileNetV4是一个利用ImageNet-1k数据集训练的图像分类模型,具有3.8M参数和0.2 GMACs的复杂度。该模型由timm库优化,使用了与MobileNet-V4论文一致的超参数。其训练和测试图像尺寸分别为224x224和256x256,适用于移动平台。更多信息可在PyTorch Image Models和相关论文中找到。
efficientnet_b5.sw_in12k_ft_in1k - EfficientNet-加强版:适用于图像分类与特征提取的高效模型
timm图像分类Huggingface特征提取开源项目模型GithubEfficientNetImageNet
EfficientNet模型结合了Swin Transformer的优化策略,经过ImageNet-12k预训练及ImageNet-1k微调,适用于图像识别、特征提取和嵌入生成。该模型使用AdamW优化器、梯度裁剪和余弦退火学习率等技术,提供高效的图像分类解决方案。
resnet50.ram_in1k - ResNet50模型在ImageNet-1k上的应用与特征提取
timmAugMixImageNet-1k模型GithubResNet-B开源项目图像分类Huggingface
ResNet50模型通过ReLU激活函数和7x7单层卷积实现图像分类,下采样优化采用1x1卷积。在训练过程中结合了AugMix、RandAugment与SGD优化策略,并通过余弦学习率和暖启动机制来提升在ImageNet-1k数据集上的表现。该模型由timm库实现,支持多种用途,如图像分类、特征提取和图像嵌入。
mobilenetv4_conv_medium.e500_r256_in1k - MobileNet-V4中档卷积模型:在保持较低参数量的同时提高图像分类效率
timm特征提取MobileNet-V4ImageNet-1k模型Github开源项目图像分类Huggingface
介绍了在ImageNet-1k数据集上训练的MobileNet-V4图像分类模型,其在维持高效分类精度的同时,降低了参数和计算量。模型支持特征提取和图像嵌入等应用场景,并与同类模型进行了广泛比较,适用于移动设备上的高效图像处理。
twins_svt_large.in1k - Twins-SVT模型适用于图像分类的创新Transformer架构
timmTwins-SVTImageNet-1k模型Github开源项目图像分类Vision TransformersHuggingface
Twins-SVT是一个利用空间注意力机制的图像分类模型,在ImageNet-1k上训练,具备99.3M参数及15.1 GMACs。通过timm库调用,能有效用于图像识别与特征嵌入工作。
tf_efficientnet_b5.ns_jft_in1k - 精准描述EfficientNet的图像分类与特征提取能力
开源项目模型timmImageNetGithubHuggingfaceEfficientNet图像分类Noisy Student
模型tf_efficientnet_b5.ns_jft_in1k,根植于EfficientNet,经过Noisy Student半监督学习技术在Tensorflow上训练后移植至PyTorch,专用于ImageNet-1k和JFT-300m未标记数据集的图像分类,具有优越的准确性和效能。其结构简洁,具备卓越的特征提取和图像嵌入能力,在多种计算机视觉任务中广泛应用。
convnext_nano.in12k_ft_in1k - 基于ConvNeXt架构的轻量级图像分类模型
ConvNeXtGithub模型ImageNet开源项目图像分类timmHuggingface特征提取
convnext_nano.in12k_ft_in1k是基于ConvNeXt架构开发的轻量级图像分类模型,模型参数量1560万,在ImageNet-12k数据集预训练后在ImageNet-1k微调。支持图像分类、特征提取和嵌入向量生成等功能,适用于计算资源受限环境下的视觉任务。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号