#TorchScript
sk2torch: 将scikit-learn模型转换为PyTorch模块的强大工具
Torch-MLIR:为PyTorch和MLIR生态系统搭建桥梁
stable-fast:一个高性能的Stable Diffusion推理优化框架
stable-fast
stable-fast是一个优化HuggingFace Diffusers推理性能的轻量级框架,支持NVIDIA GPU。相比TensorRT和AITemplate需要几十分钟的编译时间,stable-fast仅需几秒钟即可完成模型编译。主要特色包括动态形状、低精度计算和多种算子融合。它还兼容ControlNet和LoRA,并支持最新的StableVideoDiffusionPipeline,是加速PyTorch推理的有效工具。
facetorch
Facetorch是一个Python库,使用深度神经网络进行面部检测和特征分析。它支持Hydra配置,使用conda-lock和Docker进行环境重现,并通过TorchScript加速CPU和GPU性能。该工具可扩展,允许通过Google Drive上传模型文件和添加配置文件。请谨慎使用,并遵循欧盟可信AI伦理指南。
torch-mlir
Torch-MLIR项目为PyTorch生态系统提供高级编译器支持,并实现与MLIR生态系统的高效集成。通过多种路径,该项目能够将PyTorch模型转换成Torch MLIR方言,简化硬件供应商的开发过程。此外,还提供了预构建快照,便于安装和使用,并通过示例指导用户完成模型转换和结果运行。该项目是LLVM孵化器的一部分,正在持续发展,且拥有广泛的社区支持和交流渠道。
sk2torch
sk2torch是一个开源工具,用于将scikit-learn模型转换为PyTorch模块。它解决了GPU加速推理、模型序列化和梯度计算等问题。sk2torch支持多种scikit-learn模型,使机器学习从业者能够利用PyTorch的GPU加速、TorchScript序列化和反向传播功能。这个项目为scikit-learn用户提供了更多的灵活性和性能优化选择。