#训练数据集
tacotron
基于TensorFlow的Tacotron模型,是一个全面的端对端文本转语音合成系统。该模型涵盖多种数据集,运用现代深度学习与注意力机制优化文本到语音的高质量转换,适用于学术研究与商业应用。
daclip-uir
DA-CLIP模型通过视觉语言控制实现通用图像修复。用户可以通过多种方式使用预训练模型,如Gradio应用测试图像,或通过提供的代码示例和数据准备步骤进行训练和评估。该项目提供解决多种真实世界图像退化问题的方法,并提供多种预训练模型供下载。功能和性能的持续更新显著提升了其在图像修复中的适用性。
Platypus2-13B
该模型基于LLaMA2-13B架构进行指令微调,具备自动回归功能。使用STEM和逻辑数据集进行训练,在ARC和HellaSwag等任务中表现优异。开发者应在应用前进行安全测试,以验证适用性并减轻可能的偏见。
Swallow-MX-8x7b-NVE-v0.1
Swallow-MX-8x7b-NVE-v0.1基于Mixtral-8x7B-Instruct持续预训练,增加了日语数据模块,提升了多语言文本生成性能。该模型在日文常识问答和翻译任务中表现突出,发布于Apache-2.0开源许可证下。该版本仍在开发中,提醒注意输出的安全性。项目由ABCI计划支持,适用于多语言自然语言处理任务。
COKAL-DPO_test-v2-13b
模型由韩国公司Media Group Saramwa Soop与Marker合作开发,基于LLaMA2变压器架构,具备文本生成能力。基础模型为COKAL_pre_DPO_Test_v1-13b,采用DPO及SFT私有数据集训练,适用于多种文本生成任务。该研究项目由韩国科学技术信息通信部和光州广域市资助,旨在推动人工智能产业集群发展。
stablelm-2-1_6b-chat
StableLM 2 Chat 1.6B由Stability AI创建,是基于transformer解码器架构的自然语言模型,专为对话场景设计。模型使用多种公开和合成数据集训练,并运用直接偏好优化算法。OpenLLM排行榜上的出色表现使其适用于对话应用,建议配置输入输出分类器以提升安全性和降低偏误,适合非商业用途。
Swallow-7b-instruct-hf
Swallow模型加入日语数据进行持续预训练,支持日语和英语。项目推出不同版本的指令调优模型,如Swallow-7b-instruct-v0.1,以提升日语任务表现。通过广泛的词汇表和较少的tokens,模型在文本生成、机器翻译和阅读理解任务中表现优异,提供快速而精确的文本推理。
OLMo-7B
OLMo系列模型由Allen Institute for AI开发,旨在推进语言模型科学。该系列模型使用Dolma数据集进行训练,提供诸如OLMo 7B等多种版本及详细的训练检查点和代码支持。这些模型可用于英文学术研究,并可在Hugging Face平台上获取。项目获得哈佛大学、Databricks、AMD等机构支持,并在MMLU测试中显示出明显的性能提升。
dolphin-2.9.3-mistral-nemo-12b
Dolphin 2.9.3由Eric Hartford和Cognitive Computations开发,基于mistralai/Mistral-Nemo-Base-2407,并使用ChatML格式。这个模型集成了多种指令跟随、对话和编程能力,涵盖初步代理功能和函数调用。数据集经过过滤,以去除对齐与偏见,增强模型的合规性。由于模型未进行内容审查,建议在对外服务前实施自定义对齐层。使用此模型需要自行承担责任。它在Apache 2.0许可下发布,允许多种用途,包括商业用途。