#Transformers.js
Transformers.js: 在浏览器中运行先进的机器学习模型
transformers.js
Transformers.js是一个JavaScript库,可在浏览器中直接运行Hugging Face的Transformers模型,无需服务器。该库支持自然语言处理、计算机视觉、音频处理和多模态任务,使用ONNX Runtime执行模型。它的设计与Python版Transformers功能相同,提供简单API运行预训练模型,并支持将自定义模型转换为ONNX格式。
whisper-web
Whisper Web是一个基于机器学习的浏览器端语音识别项目。它利用 Transformers.js 技术,在客户端实现实时语音处理,无需服务器支持。该项目提供在线演示和本地部署选项,并正在开发 WebGPU 支持以提高性能。Whisper Web 展示了 Web 技术在语音识别领域的应用潜力,为开发者提供了一个便捷的语音识别解决方案。
clip-vit-base-patch32
在Transformers.js中实现ONNX权重兼容性,支持进行零样本图像分类,使用模型Xenova/clip-vit-base-patch32。通过简单的npm安装Transformers.js库,利用pipeline API实现图像和标签的高效匹配。此项目旨在为WebML的未来发展提供一个过渡方案,建议将模型转换为ONNX格式以便于网络使用。
bge-reranker-base
此项目通过兼容ONNX权重与Transformers.js,支持WebML技术发展。用户可将模型转换为ONNX格式,以满足网页应用需求。本页面提供指南,协助开发者将模型转为ONNX并在Web环境中应用。更多详情可参考🤗 Optimum项目,获取详细优化支持与结构建议。
bge-large-en-v1.5
该开源项目使用ONNX权重,以在Transformers.js环境下实现模型兼容。通过特征提取管道,用户能够高效计算句子嵌入,实现文本语义分析与快速检索,提升JavaScript环境下的文本处理效率。
all-MiniLM-L6-v2
all-MiniLM-L6-v2是一款基于Transformers.js的轻量级句子嵌入模型。它使用ONNX权重,与Transformers.js完全兼容,适用于Web环境的文本分析。开发者可通过简洁的JavaScript代码创建特征提取管道,快速生成多个句子的标准化嵌入向量。该模型为自然语言处理提供了高效解决方案,尤其适合需要在浏览器中进行文本分析的应用场景。
clip-vit-base-patch16
clip-vit-base-patch16是OpenAI CLIP模型的一个变种,专注于零样本图像分类任务。这个模型使用ONNX格式的权重,可与Transformers.js库无缝集成,方便在Web环境中应用。它不仅提供了易用的pipeline API用于图像分类,还支持独立的文本和图像嵌入计算功能。该模型在处理各种图像分析和跨模态任务时,能够在性能和计算效率之间保持良好平衡。
Florence-2-base-ft
Florence-2-base-ft是一个基于ONNX权重的图像识别模型,专门针对Web环境优化。通过Transformers.js框架,该模型能够实现图像描述生成等功能。开发者可以通过JavaScript API将图像分析能力集成到Web应用中,项目提供在线演示展示具体应用效果。
gte-small
本项目介绍了使用ONNX权重与Transformers.js库计算模型嵌入和余弦相似度的过程。通过安装Transformers.js库,可以轻松地创建特征提取管道,并进行句子嵌入和相似度计算。项目默认采用8位量化模型,同时支持全精度版本。ONNX模型为未来的WebML应用做好了准备,建议通过Optimum工具进行ONNX格式转换以实现网络兼容。