#视觉表示学习

solo-learn - 使用自监督学习进行无监督视觉表征的方法与技巧
Github开源项目PyTorch Lightning自监督学习solo-learn视觉表示学习无监督
solo-learn库基于PyTorch Lightning,提供多种自监督方法用于无监督视觉表征学习。该库包含全面的训练技巧和多种数据处理、评估方式,以提高训练效果和可重复性。其主要特点有快速的数据处理、自定义模型检查点、线上和线下的K-NN评估。库内包含灵活的数据增强、可视化功能,并不断更新方法和改进教程,使模型训练和调试更加高效简便。
Vim - 基于双向状态空间模型的高效视觉表示学习
Github开源项目深度学习图像分类视觉表示学习Vision Mamba状态空间模型
Vision Mamba是一种基于双向Mamba块的新型视觉主干网络。该模型通过位置嵌入和双向状态空间模型处理图像序列,在ImageNet分类、COCO目标检测和ADE20k语义分割等任务上表现优异。与DeiT等视觉Transformer相比,Vision Mamba不仅性能更高,还大幅提升了计算和内存效率。其在高分辨率图像特征提取方面的出色表现,使其有潜力成为新一代视觉基础模型的核心架构。
syn-rep-learn - 探索合成图像在视觉表示学习中的应用
人工智能Github开源项目深度学习视觉表示学习图像生成模型合成数据学习
Syn-Rep-Learn 项目研究合成图像在视觉表示学习中的应用。该项目包括三个主要研究方向:StableRep 探索文本到图像模型生成的合成图像在视觉表示学习中的作用,Scaling 分析合成图像在模型训练中的扩展规律,SynCLR 比较从模型和实际数据学习视觉的效果。这些研究为计算机视觉和机器学习领域提供了新的视角。