#XLM-RoBERTa
sentiment-hts5-xlm-roberta-hungarian - 使用XLM-RoBERTa进行匈牙利语推文情感分类
XLM-RoBERTaGithub模型匈牙利语文本分类开源项目Huggingface情感分析
此情感分析模型基于XLM-RoBERTa,对匈牙利推文进行五种情感状态的分类。模型经过HTS数据集微调,支持分析最长128字符的推文。了解更多技术细节和使用实例,可访问GitHub或在线演示网站。
xlm-roberta_punctuation_fullstop_truecase - XLM-RoBERTa模型实现47种语言的标点恢复和句子分割
模型句子边界检测XLM-RoBERTa开源项目Huggingface标点符号Github大小写转换多语言
该模型基于XLM-RoBERTa架构,能够在47种语言中自动恢复标点符号、调整大小写和检测句子边界。通过创新的神经网络设计,无需语言特定路径即可处理多种语言文本。模型支持批量处理,可通过punctuators包或直接使用ONNX和SentencePiece模型进行部署,为多语言文本处理提供了灵活高效的解决方案。
xlm-roberta-large-xnli - XLM-RoBERTa基于XNLI的多语言零样本文本分类模型
零样本分类模型自然语言推理多语言文本分类XLM-RoBERTaGithubHuggingface开源项目
xlm-roberta-large-xnli是一个基于XLM-RoBERTa大型模型微调的多语言自然语言推理模型。该模型支持15种语言的零样本文本分类,包括英语、法语和西班牙语等。经过XNLI数据集训练后,模型可用于跨语言文本分类任务。它提供简单的pipeline接口,便于进行多语言零样本分类。此模型适用于需要在多种语言中进行文本分类的应用场景,尤其适合非英语语言的分类任务。
xlm-roberta-base-ner-silvanus - 基于XLM-RoBERTa的多语言命名实体识别模型
模型命名实体识别XLM-RoBERTaGithub零样本迁移学习NERHuggingface开源项目多语言模型
该模型基于xlm-roberta-base在印尼NER数据集上微调而来,可从社交媒体文本中提取位置、日期和时间信息。虽然训练数据为印尼语,但通过零样本迁移学习,模型支持英语、西班牙语、意大利语和斯洛伐克语的信息提取。在验证集上,模型展现出91.89%的精确率、92.73%的召回率和92.31%的F1分数,显示了其在多语言命名实体识别任务中的有效性。
xlm-roberta-base-language-detection-onnx - 基于XLM-RoBERTa的多语言文本识别系统
多语言模型开源项目XLM-RoBERTa模型文本分类GithubONNX转换语言检测Huggingface
这是一个将xlm-roberta-base转换为ONNX格式的语言检测模型,支持阿拉伯语、中文、英语等20种语言识别。模型通过序列分类技术实现语言检测,并结合Optimum库确保高效运行,适合多语言文本分析场景。
xlm-roberta-large-wnut2017 - XLM-RoBERTa模型在多语言命名实体识别中的应用
XLM-RoBERTaGithub模型开源项目TransformerNERHuggingface模型微调自然语言处理
xlm-roberta-large-wnut2017是一个微调用于多语言命名实体识别的XLM-RoBERTa模型,具备多语言处理能力。使用者可以轻松地调用该模型以增强语言信息提取的效率。详情请参考TNER官方库。
tner-xlm-roberta-base-ontonotes5 - XLM-RoBERTa多语言命名实体识别模型实现高精度实体标注
XLM-RoBERTa标记分类自然语言处理开源项目模型GithubHuggingface命名实体识别深度学习
该命名实体识别模型基于XLM-RoBERTa预训练模型微调,专用于令牌分类任务。模型支持识别组织、人名、地点等多种实体类型,采用12层注意力头结构,词汇表包含250002个词。项目提供完整训练数据集和评估指标,并通过tner库实现简单集成。其开源特性和易用API使其成为构建高性能多语言NER应用的理想选择。
xlm-roberta-large-finetuned-conll03-german - 基于XLM-RoBERTa的大型多语言模型优化德国文本的命名实体识别
模型训练命名实体识别自然语言处理HuggingfaceGithub开源项目模型XLM-RoBERTa多语言模型
该项目展示了一种基于大规模多语言数据训练的XLM-RoBERTa模型,专注于德语文本的命名实体识别和词性标注,能够高效解析德语文本,并通过内置管道进行自然语言理解任务的方便集成。
langdetect - 语言检测工具,支持现代和中世纪多种语言
Github文本分类XLM-RoBERTa开源项目跨语言学习模型Huggingface语言检测中世纪语言
langdetect是一个基于XLM-RoBERTa的语言检测模型,支持包括现代和中世纪在内的41种语言。该模型经过微调,专用于文本序列的分类任务,测试集准确率高达99.59%。利用Monasterium和Wikipedia数据集进行训练,确保其在多语言文本分类中的高效表现。该模型适合各种科研和应用场景,满足多语言识别的需求。