#XLSR-53

wav2vec2-large-xlsr-53-persian - 基于XLSR-53微调的开源波斯语语音识别模型
Github开源项目语音识别模型HuggingfaceCommon VoiceXLSR-53Wav2Vec2波斯语
该开源项目提供了一个基于XLSR-53的波斯语语音识别模型。通过在Common Voice数据集上微调,模型达到30.12%词错误率和7.37%字符错误率,超越同类方案。模型支持16kHz采样率语音直接识别,无需额外语言模型。项目包含完整使用指南和评估脚本,方便研究与应用。
wav2vec2-large-xlsr-53-greek - 基于wav2vec2的希腊语语音识别模型
Github开源项目语音识别模型HuggingfaceCommon VoiceXLSR-53Wav2Vec2希腊语
这是一个基于wav2vec2-large-xlsr-53微调的希腊语语音识别模型,在Common Voice和CSS10数据集上训练。模型可直接使用,无需额外语言模型,适用于16kHz采样率的语音输入。在Common Voice希腊语测试集上,该模型实现了11.62%的词错误率和3.36%的字符错误率。模型提供简单的使用方法,为希腊语自动语音识别提供了有效解决方案。
wav2vec2-large-xlsr-53-spanish - 基于XLSR-53微调的西班牙语语音识别模型
Github开源项目语音识别模型HuggingfaceCommon Voice西班牙语XLSR-53Wav2Vec2
此西班牙语语音识别模型基于Facebook的wav2vec2-large-xlsr-53,在Common Voice数据集上微调。模型在测试集上达到8.82%词错误率和2.58%字符错误率,可直接处理16kHz采样的语音输入。项目提供使用示例和评估脚本,便于用户应用和评估。模型采用16kHz采样率,无需额外语言模型即可使用。项目还包含详细的使用说明和评估方法,有助于研究人员和开发者快速集成和测试。
wav2vec2-large-xlsr-53-finnish - 基于XLSR-53的芬兰语自动语音识别模型
Github开源项目语音识别模型HuggingfaceCommon VoiceXLSR-53Wav2Vec2芬兰语
该模型是在wav2vec2-large-xlsr-53基础上微调的芬兰语语音识别系统。它利用Common Voice和CSS10数据集训练,支持16kHz采样率输入。无需额外语言模型,可直接用于芬兰语语音转文本。在Common Voice测试集上,词错率41.6%,字符错率8.23%。项目提供了使用指南和评估方法,适合芬兰语语音识别应用。
wav2vec2-large-xlsr-53-hungarian - 基于XLSR-53微调的匈牙利语语音识别模型
Github开源项目语音识别模型HuggingfaceCommon Voice匈牙利语XLSR-53Wav2Vec2
该模型基于wav2vec2-large-xlsr-53在匈牙利语语音数据上微调而来,在Common Voice测试集上实现31.40%的词错误率和6.20%的字符错误率,性能优于同类模型。支持16kHz采样率的语音输入,无需额外语言模型即可使用。开发者可通过HuggingSound库或自定义脚本轻松集成该模型,实现匈牙利语语音识别功能。
wav2vec2-large-xlsr-53-italian - XLSR-53微调的开源意大利语语音识别模型
Github开源项目语音识别模型HuggingfaceCommon VoiceXLSR-53Wav2Vec2意大利语
这是一个基于Facebook的wav2vec2-large-xlsr-53模型,在Common Voice 6.1意大利语数据集上微调的语音识别模型。模型在测试集上达到9.41%的词错误率和2.29%的字符错误率。支持直接处理16kHz采样的语音输入,无需额外语言模型。项目提供了详细的使用说明和评估脚本,便于研究人员快速应用和测试。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号