#zero-shot分类
diffusion-classifier - 利用大规模文本到图像生成模型实现零样本分类
Diffusion ClassifierStable Diffusionzero-shot分类生成模型ICCV 2023Github开源项目
本项目展示了如何利用大型文本图像生成模型如Stable Diffusion进行零样本分类,无需额外训练。该生成分类方法在多项基准测试中表现优越,超过其他扩散模型的知识提取方法。通过从ImageNet的类条件扩散模型中提取标准分类器,该模型即使在仅使用弱增强的情况下也表现出强大的分类性能和分布转移的稳健性。本研究推进了生成模型在下游任务中的应用,是对多模态组合推理能力的重要探索。
nli-deberta-v3-xsmall - 使用DeBERTa模型实现自然语言推理与零样本分类
SNLI开源项目Cross-Encoderzero-shot分类模型HuggingfaceMultiNLIGithub自然语言推理
该模型通过Cross-Encoder技术训练,基于microsoft/deberta-v3-xsmall,实现自然语言推理及零样本分类。其使用SNLI和MultiNLI数据进行训练,表现为:SNLI测试集91.64%的准确率,MNLI错配集87.77%的准确率。模型能识别句对的矛盾、蕴涵和中立标签,支持Python和Transformers库的调用,便于在多场景中应用。详细信息请参阅文档以提升项目中的自然语言处理效果。