Project Icon

GENA_LM

专为长DNA序列设计的开源基础模型家族

GENA-LM是专为长DNA序列设计的开源基础模型家族。它采用BPE分词方法,支持最长36k bp的输入序列,并基于最新T2T人类基因组进行预训练。该项目提供多种预训练模型,包括BERT和BigBird架构,可用于启动子预测和剪接位点识别等多种下游任务。GENA-LM为基因组学研究提供了新的分析工具,促进了DNA序列分析技术的进步。

xgen - 支持8K输入长度的7B长序列模型
7B LLM8K Input Sequence LengthGithubHuggingFace HubSalesforce AI ResearchXGen开源项目
Salesforce AI Research发布了XGen模型系列,支持最长8K输入序列。这些模型包括适用于4K和8K序列长度的基础模型以及经过指令微调的8K模型。模型使用OpenAI的Tiktoken进行分词,并可用于自回归采样。访问HuggingFace Hub获取更多模型详细信息和使用方法。
RNA-FM - 高精度RNA结构和功能预测的解释性基础模型
GithubRNA-FMRNA功能预测RNA结构预测RNA语言模型开源项目预训练模型
RNA-FM是一个基于未注释数据训练的RNA基础模型,在RNA结构预测和功能相关任务中表现出色。项目提供预训练模型和代码,支持RNA嵌入生成和二级结构预测。最新更新包含RNA家族聚类和类型分类教程,以及针对mRNA编码序列的mRNA-FM模型。RNA-FM为RNA研究提供了有力工具,有助于提高RNA结构和功能预测的准确性。
rinalmo - 基于BERT的非编码RNA预训练模型助力RNA结构预测
GithubHuggingfaceRNA模型RiNALMo序列分析开源项目模型深度学习生物信息学
RiNALMo是一种基于BERT架构的非编码RNA预训练语言模型。该模型在3600万条独特ncRNA序列上使用掩码语言建模进行训练,可有效应用于RNA结构预测。模型包含33层、1280个隐藏单元和20个注意力头,总参数量达6.5亿。RiNALMo可用于RNA序列特征提取、序列和核苷酸级别的分类回归任务,以及RNA接触预测等多种下游应用。
genie - 创新算法实现蛋白质从头设计 开源项目助力生物技术突破
GenieGithub开源项目氨基酸残基深度学习等变扩散蛋白质设计
Genie是一个开源的人工智能蛋白质设计项目,利用机器学习算法自动生成新型蛋白质结构。它提供完整的代码库,支持模型训练、结构采样和性能评估。研究人员可使用Genie设计长度为50至128个氨基酸的蛋白质,应用于生物技术、医药研发和材料科学等领域。项目集成了多种评估工具,为蛋白质工程提供了创新解决方案,为研究人员带来新的可能性。
enformer-official-rough - 基于Transformer的神经网络架构实现精准基因表达预测
EnformerGithubHuggingfaceTransformer架构基因表达预测开源项目模型深度学习长程相互作用
Enformer是一个基于Transformer的神经网络架构,能从DNA序列中精确预测基因表达。该模型由Avsec等人在Nature期刊发表,并在DeepMind的GitHub仓库首次公开。本项目将官方权重移植至PyTorch,为基因组学研究提供了有力工具。研究人员可参考enformer-pytorch的使用说明,进行基因表达预测和分析。该模型在整合长程相互作用方面表现出色,大幅提高了基因表达预测的准确性。
gemma-2b - 轻量级开源语言模型实现高效文本生成
GemmaGithubHuggingface人工智能大语言模型开源项目机器学习模型自然语言处理
Gemma-2b是Google开发的轻量级开源语言模型,采用Gemini技术。这个2B参数的基础版本可在资源受限环境中部署,支持问答、摘要和推理等文本生成任务。模型在多项基准测试中表现优异,并重视伦理和安全。Gemma-2b为开发者提供微调和创新机会,推动AI技术普及。
llms - 大型语言模型的原理与实践应用全面解析
BERTGPTGithubTransformer开源项目自然语言处理语言模型
本项目全面介绍大型语言模型(LLMs)的基本概念、应用场景和技术演进。内容涵盖统计语言模型、神经网络语言模型,以及基于Transformer的预训练模型如GPT和BERT等。系统讲解LLMs核心原理,并探讨模型评估、文本生成和提示工程等实用技术。同时展示LLMs在计算机视觉等领域的创新应用,通过理论与实践结合,为读者提供深入了解LLMs技术的全面指南。
prot_bert - BERT蛋白质序列模型助力破解生命密码
GithubHuggingfaceProtBert开源项目掩码语言建模模型氨基酸序列生物信息学蛋白质语言模型
ProtBert是一种基于BERT架构的蛋白质序列预训练语言模型,在2.17亿个蛋白质序列上进行自监督学习。该模型能捕获序列中的关键生物物理特性,可用于蛋白质特征提取或下游任务微调。在二级结构预测和亚细胞定位等任务中表现优异,为解析蛋白质功能提供新工具。ProtBert展现了人工智能在生命科学领域的应用潜力。
evo-1-8k-base - 高效的生物长序列建模与设计的深度信号处理模型
EvoGithubHuggingfaceStripedHyena基因组学开源项目模型模型架构深度信号处理
Evo是一个基于生物的基础模型,通过StripedHyena架构支持长序列建模与设计。Evo拥有7亿参数,可在单核苷酸和字节级别进行建模,并在计算和内存使用上实现接近线性的扩展。Evo-1-8k-base模型适用于8,192上下文长度的分子层面微调,是Evo家族中的第一款产品。此模型不仅支持高效的自动回归生成,还能快速处理长上下文训练和微调,在自然语言和生物序列的大规模数据处理中展示出色的扩展性。作为开源科学的组成部分,该项目提供15个阶段的中间预训练检查点以供研究使用。
LucaOne - 整合核酸和蛋白质语言的通用生物模型
GithubLucaOne下游任务开源项目生物基础模型统一核酸和蛋白质语言预训练任务
LucaOne是一个整合核酸和蛋白质语言处理的生物基础模型。通过多任务预训练,该模型实现了DNA、RNA和蛋白质序列的高效表示学习。在序列分类、结构预测等多个下游任务中,LucaOne展现出优异性能。项目开源了训练数据、代码和预训练模型,为生物信息学研究提供了实用工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号