Project Icon

NADI2024-baseline

多标签阿拉伯方言识别模型,提高文本分类的准确性

该项目提供了一个基于BERT模型的多标签阿拉伯方言识别工具,通过微调多个数据集实现国家级方言识别。模型使用MarBERTv2作为基础,能够实现多标签预测,提高文本中多个方言的识别精度,为阿拉伯语自然语言处理提供良好的基础和测试平台,涵盖18个国家的方言。

distilbert-base-multilingual-cased-sentiment - 多语种情感分析模型的高效文本分类能力
Amazon评论GithubHuggingfacedistilbert-base-multilingual-cased-sentiment开源项目情感分析文本分类机器学习模型
本项目基于distilbert-base-multilingual-cased模型进行微调,在amazon_reviews_multi数据集上实现了优异的文本分类效果,准确率和F1值均为0.7648。模型通过优化训练参数和分布式数据处理,实现高效运行,适合多语言情感分析应用场景,可用于全球市场的用户评价分析。
bcms-bertic-ner - BERTić微调模型实现BCMS语言的高效命名实体识别
BERTićGithubHuggingface命名实体识别巴尔干语言开源项目机器学习模型自然语言处理
bcms-bertic-ner是一个针对波斯尼亚语、克罗地亚语、黑山语和塞尔维亚语(BCMS)的命名实体识别模型。该模型基于BERTić架构,通过多个标准和社交媒体数据集进行微调,可识别人名、地点、组织和其他实体。在开发数据上,模型达到91.38的F1分数,为BCMS语言的自然语言处理任务提供了有力工具。
bert-fa-base-uncased-ner-peyma - 基于BERT的波斯语命名实体识别模型ParsBERT
GithubHuggingfaceParsBERTTransformer命名实体识别开源项目模型波斯语自然语言处理
ParsBERT是一个用于波斯语命名实体识别(NER)的开源模型。该模型基于BERT架构,在PEYMA数据集上训练,可识别7类命名实体。在PEYMA测试集上,ParsBERT实现了93.40%的F1分数,超越了此前的模型。研究者可通过Hugging Face Transformers库便捷地应用此模型进行波斯语NER任务。
bert-fa-base-uncased - 波斯语领域预训练的单语言Transformer模型
GithubHuggingfaceParsBERT命名实体识别开源项目情感分析模型语言模型预训练
ParsBERT是一个基于Transformer架构的波斯语单语言模型,通过大规模波斯语料库预训练,能够处理情感分析、文本分类及命名实体识别等任务。ParsBERT v2.0通过词汇表重构和新波斯语料库微调,在多项任务中表现优于多语言BERT和其他模型,提升了波斯语语言处理的效果。该模型支持掩码语言建模和后续任务微调,用户可在Hugging Face平台获取不同任务的微调版本。
bert-base-indonesian-NER - BERT模型驱动的印度尼西亚语命名实体识别系统
GithubHuggingfaceMIT印尼语开源项目标记分类模型许可证语言
bert-base-indonesian-NER是一个基于BERT架构的印度尼西亚语命名实体识别模型。该模型经过优化,能够准确识别印尼语文本中的人名、地名和组织机构等实体。作为印尼语自然语言处理的重要工具,此项目为本地化NLP技术的发展提供了有力支持。
bangla-bert-base - 预训练孟加拉语模型,增强自然语言处理效果
Bangla-BertGithubHuggingface孟加拉语开源项目模型自然语言处理评估结果预训练语言模型
Bangla BERT Base是一款为孟加拉语开发的预训练语言模型,现已在Hugging Face平台上可用。该模型通过BERT的Masked Language Modeling进行训练,使用来自Bengali Commoncrawl和Wikipedia的语料库,并借助BNLP包进行词汇表构建。採用了bert-base-uncased架构,共有12层、768个隐藏单元、12个注意力头和110M参数。经过100万步训练,它在情感分析、仇恨言论检测和新闻分类等下游任务中表现突出,与多语言BERT和Bengali Electra相比,提高了精度。尤其是在Bengali NER任务中,评估结果相对优秀。该模型已经被应用于多项研究,是处理孟加拉语NLP任务的可靠工具。
bert-base-turkish-cased-ner - 土耳其语BERT命名实体识别模型实现99.61%准确率
BERTGithubHuggingface命名实体识别土耳其语言模型开源项目模型模型训练自然语言处理
该项目提供了一个基于BERT的土耳其语命名实体识别模型。通过使用精选的土耳其NER数据集进行微调,模型能够识别人名、组织机构和地点等实体。在多个测试集上,模型展现出优异性能,总体F1分数为96.17%,准确率达99.61%。项目还提供了简洁的使用接口,便于集成到各种土耳其语自然语言处理任务中。
bert-multilingual-go-emtions - 多语言情感分类模型,支持高效识别28种情感
BERTGithubGoEmotionsHuggingface多语言开源项目情感分类模型模型性能
该BERT模型经过微调,可在GoEmotions数据集上进行中英跨语言情感分类,支持28种情感类别,如喜悦、愤怒、爱等。模型在验证集上表现出85.95%的高准确率,训练过程结合了英语和机器翻译的中文样本,通过两阶段方法提升性能,包含初始训练和高置信度样本回馈再训练。
bert-base-NER - 基于BERT的高性能命名实体识别模型用于精准NER任务
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-base-NER是一个基于BERT的预训练模型,专门用于命名实体识别任务。该模型在CoNLL-2003数据集上进行微调,能够识别地点、组织、人名和杂项四类实体。在NER任务中,bert-base-NER展现出优秀性能,F1分数达92.59%。模型提供简洁接口,可广泛应用于各类自然语言处理场景。
muril-base-cased - MuRIL:适用于多种印度语言的多语言BERT模型
GithubHuggingfaceMuRIL印度语言多语言表征开源项目模型自然语言处理迁移学习
MuRIL是一种专为17种印度语言及其音译数据预训练的BERT模型。此模型利用公共数据集和新颖的训练方法,在低资源语言处理上表现优异。MuRIL在多个基准任务中超越了传统的mBERT模型,适用于印度语言的多种NLP任务,并附带预处理模块及使用指南以支持有效应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号