Project Icon

Reinforcement-Learning-Papers

强化学习顶会论文精选资源库

这是一个汇集AAAI、IJCAI、NeurIPS等顶级会议强化学习论文的资源库。涵盖多智能体、元学习、分层学习等前沿方向,提供PDF和代码链接。项目定期更新,为研究人员追踪领域发展、探索新算法提供便捷参考。

Reinforcement Learning!

Welcome to our GitHub repository! This repository is dedicated to curating significant research papers in the field of Reinforcement Learning (RL) that have been accepted at top academic conferences such as AAAI, IJCAI, NeurIPS, ICML, ICLR, ICRA, AAMAS and more. We provide you with a convenient resource hub to help you stay updated on the latest developments in reinforcement learning, delve into research trends, and explore cutting-edge algorithms and methods.

CN doc EN doc

News

  • 2023/11/12: I added the related repository.
  • 2023/8/19: I added papers accepted at AAMAS'23, IJCAI'23, ICRA'23, ICML'23,ICLR'23, AAAI'23, NeurIPS'22 etc
  • 2023/1/6: I created the repository.

Contributing

We Need You!

Markdown format:

- **Paper Name**.
  [[pdf](link)]
  [[code](link)]
  - Author 1, Author 2, and Author 3. *conference, year*.

Please help to contribute this list by contacting me or add pull request.

For any questions, feel free to contact me 📮.

Table of Contents

1_Multi-Agent Reinforcement Learning

  • Online Tuning for Offline Decentralized Multi-Agent Reinforcement Learning. [pdf]
    • Jiechuan Jiang, Zongqing Lu. AAAI 2023.
  • Reward Poisoning Attacks on Offline Multi-Agent Reinforcement Learning. [pdf]
    • Young Wu, Jeremy McMahan, Xiaojin Zhu, Qiaomin Xie. AAAI 2023.
  • Models as Agents: Optimizing Multi-Step Predictions of Interactive Local Models in Model-Based Multi-Agent Reinforcement Learning. [pdf]
    • Zifan Wu, Chao Yu, Chen Chen, Jianye Hao, Hankz Hankui Zhuo. AAAI 2023.
  • DeCOM: Decomposed Policy for Constrained Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Zhaoxing Yang, Haiming Jin, Rong Ding, Haoyi You, Guiyun Fan, Xinbing Wang, Chenghu Zhou. AAAI 2023.
  • Quantum Multi-Agent Meta Reinforcement Learning. [pdf]
    • Won Joon Yun, Jihong Park, Joongheon Kim. AAAI 2023.
  • Learning Explicit Credit Assignment for Cooperative Multi-Agent Reinforcement Learning via Polarization Policy Gradient. [pdf]
    • Wubing Chen, Wenbin Li, Xiao Liu, Shangdong Yang, Yang Gao. AAAI 2023.
  • Learning from Good Trajectories in Offline Multi-Agent Reinforcement Learning. [pdf]
    • Qi Tian, Kun Kuang, Furui Liu, Baoxiang Wang. AAAI 2023.
  • DM²: Decentralized Multi-Agent Reinforcement Learning via Distribution Matching. [pdf]
    • Caroline Wang, Ishan Durugkar, Elad Liebman, Peter Stone. AAAI 2023.
  • Consensus Learning for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Zhiwei Xu, Bin Zhang, Dapeng Li, Zeren Zhang, Guangchong Zhou, Hao Chen, Guoliang Fan. AAAI 2023.
  • HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with Dual Coordination Mechanism. [pdf]
    • Zhiwei Xu, Yunpeng Bai, Bin Zhang, Dapeng Li, Guoliang Fan. AAAI 2023.
  • DACOM: Learning Delay-Aware Communication for Multi-Agent Reinforcement Learning. [pdf]
    • Tingting Yuan, Hwei-Ming Chung, Jie Yuan, Xiaoming Fu. AAAI 2023.
  • Certified Policy Smoothing for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Ronghui Mu, Wenjie Ruan, Leandro Soriano Marcolino, Gaojie Jin, Qiang Ni. AAAI 2023.
  • Enhancing Smart, Sustainable Mobility with Game Theory and Multi-Agent Reinforcement Learning With Applications to Ridesharing. [pdf]
    • Lucia Cipolina-Kun. AAAI 2023.
  • Tackling Safe and Efficient Multi-Agent Reinforcement Learning via Dynamic Shielding (Student Abstract). [pdf]
    • Wenli Xiao, Yiwei Lyu, John M. Dolan. AAAI 2023.
  • Multi-Agent Reinforcement Learning for Adaptive Mesh Refinement. [pdf]
    • Jiachen Yang, Ketan Mittal, Tarik Dzanic, Socratis Petrides, Brendan Keith, Brenden K. Petersen, Daniel M. Faissol, Robert W. Anderson. AAMAS 2023.
  • Adaptive Learning Rates for Multi-Agent Reinforcement Learning. [pdf]
    • Jiechuan Jiang, Zongqing Lu. AAMAS 2023.
  • Adaptive Value Decomposition with Greedy Marginal Contribution Computation for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Shanqi Liu, Yujing Hu, Runze Wu, Dong Xing, Yu Xiong, Changjie Fan, Kun Kuang, Yong Liu. AAMAS 2023.
  • A Variational Approach to Mutual Information-Based Coordination for Multi-Agent Reinforcement Learning. [pdf]
    • Woojun Kim, Whiyoung Jung, Myungsik Cho, Youngchul Sung. AAMAS 2023.
  • Mediated Multi-Agent Reinforcement Learning. [pdf]
    • Dmitry Ivanov, Ilya Zisman, Kirill Chernyshev. AAMAS 2023.
  • EXPODE: EXploiting POlicy Discrepancy for Efficient Exploration in Multi-agent Reinforcement Learning. [pdf]
    • Yucong Zhang, Chao Yu. AAMAS 2023.
  • AC2C: Adaptively Controlled Two-Hop Communication for Multi-Agent Reinforcement Learning. [pdf]
    • Xuefeng Wang, Xinran Li, Jiawei Shao, Jun Zhang. AAMAS 2023.
  • Learning Structured Communication for Multi-Agent Reinforcement Learning. [pdf]
    • Junjie Sheng, Xiangfeng Wang, Bo Jin, Wenhao Li, Jun Wang, Junchi Yan, Tsung-Hui Chang, Hongyuan Zha. AAMAS 2023.
  • Model-based Sparse Communication in Multi-agent Reinforcement Learning. [pdf]
    • Shuai Han, Mehdi Dastani, Shihan Wang. AAMAS 2023.
  • Sequential Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing. AAMAS 2023.
  • Asynchronous Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-Robot Cooperative Exploration. [pdf]
    • Chao Yu, Xinyi Yang, Jiaxuan Gao, Jiayu Chen, Yunfei Li, Jijia Liu, Yunfei Xiang, Ruixin Huang, Huazhong Yang, Yi Wu, Yu Wang. AAMAS 2023.
  • Learning from Multiple Independent Advisors in Multi-agent Reinforcement Learning. [pdf]
    • Sriram Ganapathi Subramanian, Matthew E. Taylor, Kate Larson, Mark Crowley. AAMAS 2023.
  • CraftEnv: A Flexible Collective Robotic Construction Environment for Multi-Agent Reinforcement Learning. [pdf]
    • Rui Zhao, Xu Liu, Yizheng Zhang, Minghao Li, Cheng Zhou, Shuai Li, Lei Han. AAMAS 2023.
  • Multi-Agent Reinforcement Learning with Safety Layer for Active Voltage Control. [pdf]
    • Yufeng Shi, Mingxiao Feng, Minrui Wang, Wengang Zhou, Houqiang Li. AAMAS 2023.
  • Model-based Dynamic Shielding for Safe and Efficient Multi-agent Reinforcement Learning. [pdf]
    • Wenli Xiao, Yiwei Lyu, John M. Dolan. AAMAS 2023.
  • Toward Risk-based Optimistic Exploration for Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Jihwan Oh, Joonkee Kim, Minchan Jeong, Se-Young Yun. AAMAS 2023.
  • Counterexample-Guided Policy Refinement in Multi-Agent Reinforcement Learning. [pdf]
    • Briti Gangopadhyay, Pallab Dasgupta, Soumyajit Dey. AAMAS 2023.
  • Prioritized Tasks Mining for Multi-Task Cooperative Multi-Agent Reinforcement Learning. [pdf]
    • Yang Yu, Qiyue Yin, Junge Zhang, Kaiqi Huang. AAMAS 2023.
  • TransfQMix: Transformers for Leveraging the Graph Structure of Multi-Agent Reinforcement Learning Problems. [pdf]
    • Matteo Gallici, Mario Martin, Ivan Masmitja. AAMAS 2023.
  • Parameter Sharing with Network Pruning for Scalable Multi-Agent Deep Reinforcement Learning. [pdf]
    • Woojun Kim, Youngchul Sung. AAMAS 2023.
  • Towards Explaining Sequences of Actions in Multi-Agent Deep Reinforcement Learning Models. [pdf]
    • Khaing Phyo Wai, Minghong Geng, Budhitama Subagdja, Shubham Pateria, Ah-Hwee Tan. AAMAS 2023.
  • Multi-Agent Deep Reinforcement Learning for High-Frequency Multi-Market Making. [pdf]
    • Pankaj Kumar. AAMAS 2023.
  • Learning Individual Difference Rewards in Multi-Agent Reinforcement Learning. [pdf]
    • Chen Yang, Guangkai Yang, Junge Zhang. AAMAS 2023.
  • Off-Beat Multi-Agent Reinforcement Learning. [pdf]
    • Wei Qiu, Weixun Wang, Rundong Wang, Bo An, Yujing Hu, Svetlana Obraztsova, Zinovi Rabinovich, Jianye Hao, Yingfeng Chen, Changjie Fan. AAMAS 2023.
  • Selectively Sharing Experiences Improves Multi-Agent Reinforcement Learning. [pdf]
    • Matthias Gerstgrasser, Tom Danino, Sarah Keren. AAMAS 2023.
  • Off-the-Grid MARL: Datasets and Baselines for Offline Multi-Agent Reinforcement Learning. [pdf]
    • Claude Formanek, Asad Jeewa, Jonathan P. Shock, Arnu Pretorius. AAMAS 2023.
  • Grey-box Adversarial Attack on Communication in Multi-agent Reinforcement Learning. [pdf]
    • Xiao Ma, Wu-Jun Li. AAMAS 2023.
  • Multi-Agent Reinforcement Learning for Fast-Timescale Demand Response of Residential Loads. [pdf]
    • Vincent Mai, Philippe Maisonneuve, Tianyu Zhang, Hadi Nekoei, Liam Paull, Antoine Lesage-Landry. AAMAS 2023.
  • Learning to Self-Reconfigure for Freeform Modular Robots via Altruism Multi-Agent Reinforcement Learning. [pdf]
    • Lei Wu, Bin Guo, Qiuyun Zhang, Zhuo Sun, Jieyi Zhang, Zhiwen Yu. AAMAS 2023.
  • Multi-Agent Path Finding via Reinforcement Learning with Hybrid Reward. [pdf]
    • Cheng Zhao, Liansheng Zhuang,
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号