Project Icon

everything-ai

多功能AI聊天机器人助手支持本地部署

everything-ai是一个开源项目,提供本地部署的AI聊天机器人助手。该项目支持文本生成、摘要、图像处理等多种任务,集成了先进的AI模型和检索技术。系统支持多语言处理,采用Docker部署,便于搭建个性化AI助手。

everything-ai

Your fully proficient, AI-powered and local chatbot assistant🤖

GitHub top language GitHub commit activity Static Badge Static Badge Docker image size Static Badge
Flowchart

Flowchart for everything-ai

Quickstart

1. Clone this repository

git clone https://github.com/AstraBert/everything-ai.git
cd everything-ai

2. Set your .env file

Modify:

  • VOLUME variable in the .env file so that you can mount your local file system into Docker container.
  • MODELS_PATH variable in the .env file so that you can tell llama.cpp where you stored the GGUF models you downloaded.
  • MODEL variable in the .env file so that you can tell llama.cpp what model to use (use the actual name of the gguf file, and do not forget the .gguf extension!)
  • MAX_TOKENS variable in the .env file so that you can tell llama.cpp how many new tokens it can generate as output.

An example of a .env file could be:

VOLUME="c:/Users/User/:/User/"
MODELS_PATH="c:/Users/User/.cache/llama.cpp/"
MODEL="stories260K.gguf"
MAX_TOKENS="512"

This means that now everything that is under "c:/Users/User/" on your local machine is under "/User/" in your Docker container, that llama.cpp knows where to look for models and what model to look for, along with the maximum new tokens for its output.

3. Pull the necessary images

docker pull astrabert/everything-ai:latest
docker pull qdrant/qdrant:latest
docker pull ghcr.io/ggerganov/llama.cpp:server

4. Run the multi-container app

docker compose up

5. Go to localhost:8670 and choose your assistant

You will see something like this:

Task choice interface

Choose the task among:

  • retrieval-text-generation: use qdrant backend to build a retrieval-friendly knowledge base, which you can query and tune the response of your model on. You have to pass either a pdf/a bunch of pdfs specified as comma-separated paths or a directory where all the pdfs of interest are stored (DO NOT provide both); you can also specify the language in which the PDF is written, using ISO nomenclature - MULTILINGUAL
  • agnostic-text-generation: ChatGPT-like text generation (no retrieval architecture), but supports every text-generation model on HF Hub (as long as your hardware supports it!) - MULTILINGUAL
  • text-summarization: summarize text and pdfs, supports every text-summarization model on HF Hub - ENGLISH ONLY
  • image-generation: stable diffusion, supports every text-to-image model on HF Hub - MULTILINGUAL
  • image-generation-pollinations: stable diffusion, use Pollinations AI API; if you choose 'image-generation-pollinations', you do not need to specify anything else apart from the task - MULTILINGUAL
  • image-classification: classify an image, supports every image-classification model on HF Hub - ENGLISH ONLY
  • image-to-text: describe an image, supports every image-to-text model on HF Hub - ENGLISH ONLY
  • audio-classification: classify audio files or microphone recordings, supports audio-classification models on HF hub
  • speech-recognition: transcribe audio files or microphone recordings, supports automatic-speech-recognition models on HF hub.
  • video-generation: generate video upon text prompt, supports text-to-video models on HF hub - ENGLISH ONLY
  • protein-folding: get the 3D structure of a protein from its amino-acid sequence, using ESM-2 backbone model - GPU ONLY
  • autotrain: fine-tune a model on a specific downstream task with autotrain-advanced, just by specifying you HF username, HF writing token and the path to a yaml config file for the training
  • spaces-api-supabase: use HF Spaces API in combination with Supabase PostgreSQL databases in order to unleash more powerful LLMs and larger RAG-oriented vector databases - MULTILINGUAL
  • llama.cpp-and-qdrant: same as retrieval-text-generation, but uses llama.cpp as inference engine, so you MUST NOT specify a model - MULTILINGUAL
  • build-your-llm: Build a customizable chat LLM combining a Qdrant database with your PDFs and the power of Anthropic, OpenAI, Cohere or Groq models: you just need an API key! To build the Qdrant database, have to pass either a pdf/a bunch of pdfs specified as comma-separated paths or a directory where all the pdfs of interest are stored (DO NOT provide both); you can also specify the language in which the PDF is written, using ISO nomenclature - MULTILINGUAL, LANGFUSE INTEGRATION
  • simply-chatting: Build a customizable chat LLM with the power of Anthropic, OpenAI, Cohere or Groq models (no RAG pipeline): you just need an API key! - MULTILINGUAL, LANGFUSE INTEGRATION
  • fal-img2img: Use fal.ai ComfyUI API to generate images starting from yur PNG and JPEG images: you just need an API key! You can aklso customize the generation working with prompts and seeds - ENGLISH ONLY
  • image-retrieval-search: search an image database uploading a folder as database input. The folder should have the following structure:
./
├── test/
|   ├── label1/
|   └── label2/
└── train/
    ├── label1/
    └── label2/

You can query the database starting from your own pictures.

6. Go to localhost:7860 and start using your assistant

Once everything is ready, you can head over to localhost:7860 and start using your assistant:

Chat interface
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号