Project Icon

seemore

PyTorch实现的开源视觉语言模型项目

seemore是一个基于PyTorch的开源视觉语言模型(VLM)项目。它包括图像编码器、视觉-语言投影器和解码器三个核心组件,参考了CLIP和LLaVA等前沿VLM架构。项目提供完整代码实现和详细教程,有助于开发者理解VLM原理。seemore在Databricks平台开发,支持GPU加速,并集成MLFlow用于实验管理。

LLM2Vec-Meta-Llama-3-8B-Instruct-mntp - 基于大语言模型的文本编码器实现语义检索与文本嵌入
GithubHuggingfaceLLM2Vec开源项目文本编码机器学习模型语义相似度语言模型
LLM2Vec项目将解码器型大语言模型转换为文本编码器。项目采用双向注意力机制、掩码token预测和无监督对比学习方法,用于文本嵌入和语义相似度计算。通过Python接口实现文本理解和检索功能,支持自定义指令查询,可进行模型微调以提升性能。
llava-v1.6-34b-hf - 图像与文本交互的多模态AI模型
GithubHuggingfaceLLaVa-NeXTNous-Hermes-2-Yi-34B光学字符识别多模态聊天机器人开源项目模型视觉指令微调
LLaVa-NeXT模型结合大规模语言模型与视觉编码器,通过提高图像分辨率和优化数据集,增强了OCR和常识推理能力,适用于多模态对话应用场景。支持图像字幕生成和视觉问答,提供双语功能与商业许可保障。
Llama-3.2-90B-Vision-Instruct-FP8-dynamic - 基于Meta-Llama架构的FP8量化多语言视觉对话模型
GithubHuggingfaceLlama-3.2vLLM人工智能开源项目模型模型量化视觉语言模型
这是一个基于Meta-Llama-3.2架构开发的视觉语言模型,包含900亿参数。通过FP8量化技术优化,将模型存储空间和GPU内存需求降低约50%。模型支持图像理解和多语言文本生成,主要应用于智能对话系统。借助vLLM后端可实现高效部署和OpenAI兼容服务。
llava-onevision-qwen2-7b-si - 多模态AI模型实现图像和视频的深度理解
GithubHuggingfaceLLaVA-OneVisionQwen2图像识别多模态开源项目机器学习模型
LLaVA-OneVision是一个基于Qwen2语言模型的多模态AI系统,拥有32K tokens的上下文窗口。该模型能够处理单图像、多图像和视频输入,在多个基准测试中表现出色。支持英语和中文,适用于广泛的视觉理解任务。开发者可通过提供的Python代码快速集成该模型,实现图像分析和问答功能。
cogvlm2-llama3-chat-19B - 支持8K内容长度和高分辨率图像的开源多模态AI模型
CogVLM2GithubHuggingface人工智能图像理解对话模型开源项目模型视觉语言模型
CogVLM2是基于Meta-Llama-3-8B-Instruct的开源多模态AI模型,支持8K内容长度和1344*1344图像分辨率。该模型在TextVQA、DocVQA等多项基准测试中表现优异,具备图像理解和对话能力。CogVLM2提供英文和中英双语版本,在开源模型中表现突出,部分任务性能可与非开源模型媲美。
Llama-3.2-90B-Vision-Instruct - Meta开发的多模态大语言模型实现图像理解与视觉推理
GithubHuggingfaceLlama 3.2-VisionMeta图像识别多模态大语言模型开源项目模型自然语言处理
Llama-3.2-90B-Vision-Instruct是Meta开发的多模态大语言模型,用于图像理解和视觉推理。该模型基于Llama 3.1构建,集成视觉适配器,支持图像和文本输入。在视觉识别、图像推理、描述和问答方面表现优异,超越多数多模态模型。模型具有128K上下文长度,采用60亿(图像,文本)对训练,知识覆盖至2023年12月。
Llama-3.2-11B-Vision-Instruct-nf4 - 量化视觉语言模型实现高效图像分析与理解
GithubHuggingfaceLlama-3.2图像识别开源项目模型模型部署神经网络量化视觉AI模型
Llama-3.2-11B-Vision-Instruct-nf4是一个基于meta-llama/Llama-3.2-11B-Vision-Instruct的量化视觉语言模型,采用BitsAndBytes的NF4(4位)量化技术,无需双重量化即可实现高效推理。该模型主要用于图像字幕生成等视觉分析任务,并提供详细的使用示例代码。项目还包含配套的ComfyUI自定义节点,为开发者提供了便捷的视觉分析工具集成方案。
EVA - 推进大规模视觉表示学习的前沿
CLIPEVAGithub多模态学习开源项目自监督学习视觉表示
EVA是北京智源人工智能研究院开发的视觉表示学习模型系列。它包括多个子项目,如EVA-01和EVA-CLIP,致力于探索大规模掩码视觉表示学习的极限和改进CLIP训练技术。这些模型在主流平台上提供,为计算机视觉研究提供了有力支持。EVA项目涵盖基础模型、自监督学习和多模态学习等前沿领域。
pytorch_mgie - 多模态大语言模型驱动的图像编辑指导系统
AI绘图GithubGradioMGIE图像编辑大语言模型开源项目
pytorch_mgie是一个基于多模态大语言模型的图像编辑指导系统,采用Apple开源的ml-mgie技术。该项目通过自然语言指令实现图像编辑,并提供Gradio演示界面展示LLaVA-7B模型在图像编辑任务中的应用。项目包含预训练模型和环境配置指南,为研究和开发提供了实验平台。
open_clip - 探索前沿图像与语言对比预训练技术
GithubOpenCLIP图像识别对比学习开源项目零样本学习预训练模型
OpenCLIP是一个先进的开源深度学习项目,专注于OpenAI的CLIP模型的实现和优化。该项目在多样化的数据源和不同的计算预算下成功训练出多个高效能模型,涵盖图像和文本嵌入、模型微调及新模型开发等多个领域。通过增强图像与语言的联合理解能力,OpenCLIP显著推动了人工智能技术的发展,拓宽了其应用领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号