Project Icon

rebel-large

基于BART的端到端关系抽取模型

REBEL是一个创新的关系抽取模型,基于BART架构,将关系抽取转化为序列生成任务。该模型支持200多种关系类型识别,采用端到端设计避免了多步骤处理的错误累积。在多个基准测试中表现优异,其多语言版本mREBEL进一步扩展了语言和实体类型支持范围。

rebel - 关系抽取的高效端到端语言生成新方法
GithubREBELseq2seq模型信息抽取关系抽取开源项目数据集
此项目引入了一种新型线性化方法,将关系抽取重新定义为序列到序列任务。通过BART模型,实现了超200种关系类型的端到端抽取,简化传统多步骤流程并减少错误传播。该模型在多个关系抽取和分类基准上表现出色,并提供多语言版本mREBEL和数据集支持,适用于各种信息抽取应用。
mrebel-large - 基于序列到序列学习的多语言关系抽取模型
GithubHuggingfaceREBEL关系抽取多语言模型序列到序列学习开源项目模型自然语言处理
mREBEL-large模型是基于REBEL架构的多语言关系抽取工具,支持18种语言。它将关系抽取重新定义为序列到序列任务,可作为独立系统使用或作为预训练模型进行微调。该模型在RED^{FM}数据集上训练,擅长从文本中提取实体关系三元组,为多语言自然语言处理领域提供了实用的解决方案。
bart-large - 用于自然语言生成和理解的预训练序列到序列模型
BARTGithubHuggingfaceseq2seq开源项目文本生成模型自然语言处理预训练模型
BART是基于Transformer架构的预训练语言模型,结合了双向编码器和自回归解码器。通过去噪任务预训练,BART在文本生成(如摘要、翻译)和理解任务(如分类、问答)中均表现优异。该模型适用于多种自然语言处理任务,尤其在有监督数据集上进行微调后效果显著。BART为研究人员和开发者提供了强大的工具,推动了自然语言处理技术的发展。
relik - 高效实体链接与关系抽取的开源解决方案
GithubReLiK信息抽取关系抽取实体链接开源项目预训练模型
ReLiK是一个开源的轻量级信息抽取模型,专注于实体链接和关系抽取任务。它采用检索-阅读架构,能高效处理大规模文档并提取关键信息。ReLiK支持预训练模型快速加载,适用于多种NLP场景。该项目在保证准确性的同时大幅提升了处理速度,为自然语言处理研究提供了实用的工具。
BERT-Relation-Extraction - 改进BERT模型在关系抽取任务中的应用与效果分析
ALBERTBERTGithubPython关系抽取开源项目预训练
该项目实现了ACL 2019论文《Matching the Blanks: Distributional Similarity for Relation Learning》的PyTorch开源版本,涵盖BERT、ALBERT和BioBERT三种模型。项目提供预训练和微调方法,并通过SemEval 2010任务8和FewRel数据集验证了模型在关系抽取任务中的表现。
pytorch_graph-rel - 基于关系图的联合实体和关系抽取模型
GithubGraphRel图神经网络实体关系抽取开源项目深度学习自然语言处理
GraphRel是一个用于联合实体和关系抽取的开源项目。该模型采用双向RNN和图卷积网络提取文本特征,通过两阶段处理构建关系图并整合实体和关系信息。项目基于PyTorch实现,提供了预训练模型,在NYT数据集上展现了良好性能。该方法发表于ACL 2019会议,为自然语言处理领域提供了新的解决方案。
bart-large-cnn - 基于CNN Daily Mail数据集的先进文本摘要模型
BARTGithubHuggingfacetransformer模型开源项目文本摘要机器学习模型自然语言处理
BART-large-cnn是一个基于BART架构的大型文本摘要模型,在CNN Daily Mail数据集上经过微调。这个模型采用transformer编码器-解码器结构,结合了双向编码器和自回归解码器的优势。BART-large-cnn不仅在文本摘要和翻译等生成任务中表现卓越,还在文本分类和问答等理解任务中展现出优秀性能。研究人员和开发者可以通过Hugging Face的pipeline API轻松使用该模型,实现高质量的文本摘要功能。
roberta-large-NER - XLM-RoBERTa大型模型用于多语言命名实体识别
GithubHuggingfaceXLM-RoBERTa人工智能命名实体识别多语言模型开源项目模型自然语言处理
XLM-RoBERTa-large模型基础上微调的多语言命名实体识别工具,支持100多种语言。在英语CoNLL-2003数据集上训练,可用于命名实体识别和词性标注等标记分类任务。该模型由Facebook AI研究团队开发,具有强大的跨语言能力,但存在潜在偏见和局限性。作为自然语言处理的重要工具,它为多语言文本分析提供了有力支持。
bart-base - 用于自然语言生成和理解的序列到序列预训练模型
BARTGithubHuggingface序列到序列学习开源项目文本生成模型自然语言处理预训练模型
BART是基于transformer架构的编码器-解码器模型,结合了双向编码器和自回归解码器。模型通过文本去噪和重建预训练,在摘要、翻译等文本生成任务中表现出色,同时适用于文本分类、问答等理解任务。虽可直接用于文本填充,但BART主要设计用于在监督数据集上微调。研究者可在模型中心寻找针对特定任务优化的版本。
bart-paraphrase - BART大型语言模型文本释义转换工具
BARTGithubHuggingface开源项目文本生成机器翻译模型模型微调自然语言处理
BART文本释义模型基于序列到序列架构开发,整合了BERT双向编码器与GPT单向解码器技术,通过Quora、PAWS和MSR数据集训练,实现文本的变换与释义功能。模型提供简洁的API接口,便于集成到自然语言处理应用中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号