Project Icon

bindsnet

模拟尖峰神经网络的生物启发机器学习算法

BindsNET是一个Python库,通过PyTorch的Tensor功能在CPU或GPU上模拟尖峰神经网络(SNNs)。该库旨在开发生物启发的机器学习和强化学习算法,包含丰富的实验示例和结果分析。BindsNET还兼容OpenAI gym环境库,并支持Docker镜像部署。这一项目在生物启发神经与动态系统实验室进行,核心理念是利用尖峰时间依赖可塑性(STDP)来调整神经元间的突触权重,以解决机器学习和强化学习中的问题。

Py-Boost - Python实现的GPU加速梯度提升决策树库
GPU加速GithubONNX兼容Python库多输出训练开源项目梯度提升
Py-Boost是一个Python实现的GPU加速梯度提升决策树库。该项目提供简洁接口,支持GPU训练和推理,易于定制。特色功能包括SketchBoost算法高效处理多输出任务,以及ONNX格式支持。Py-Boost为研究和开发人员提供了探索梯度提升方法的灵活工具,同时保持了较高的运行效率。
neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
webnn - Web Neural Network API为浏览器带来神经网络能力
BikeshedGitHubGithubWeb Neural Network API开源项目机器学习规范开发
Web Neural Network API是一个开源项目,致力于在Web平台上实现神经网络功能。该API由Web机器学习工作组开发,旨在为浏览器提供高效的深度学习能力。项目使用Bikeshed编写规范,支持本地和在线生成文档,并通过GitHub进行自动构建和部署,方便开发者参与贡献。
egnn-pytorch - PyTorch实现的E(n)等变图神经网络
EGNNGithub分子预测图神经网络坐标更新开源项目特征更新
这个开源项目使用PyTorch实现了E(n)等变图神经网络(EGNN)。项目提供了EGNN的简洁接口,支持边特征和稀疏邻居等功能。EGNN在动力系统建模和分子活性预测等任务中表现领先。项目还包含详细示例和稳定性优化方法,适用于处理复杂的图结构数据。
torchsde - 提供GPU支持的随机微分方程求解器
GANGithubNeural SDEPyTorchSDE solverstochastic differential equation开源项目
这个库提供了支持GPU和高效反向传播的随机微分方程(SDE)求解器。其使用Python和PyTorch开发,安装方便,并附有丰富的示例。用户可以通过简单的代码示例快速入门,并通过文档进一步学习。除了基础功能外,还包括潜在SDE和GAN中的SDE等高级应用示例。适用于在高性能计算环境中执行复杂SDE模型的研究人员和开发者。
BMTrain - 分布式大规模深度学习模型训练优化工具
BMTrainGithubZeRO优化分布式训练大模型训练开源项目性能优化
BMTrain是一款为大规模深度学习模型设计的分布式训练工具。它能够支持训练包含数十亿参数的模型,并保持代码简洁性。该工具集成了ZeRO优化和通信优化等技术,可提高训练效率和显存利用率。BMTrain与PyTorch兼容,仅需少量代码调整即可实现分布式训练。在13B参数的GPT-2模型训练中,BMTrain展现出优越性能。
pytorch-blender - 将Blender与PyTorch融合的深度学习框架
BlenderGithubPyTorchblendtorch人工视觉数据开源项目深度学习
blendtorch是一个Python框架,将Blender与PyTorch无缝集成,用于人工视觉数据的深度学习。它使用Eevee实时渲染器生成图像和注释,提高了模型训练效率。该框架支持分布式Blender渲染直接输入PyTorch数据管道,适用于监督学习和域随机化。blendtorch还提供OpenAI Gym支持,可用于强化学习训练。这一工具为人工训练数据生成和深度学习研究提供了灵活高效的解决方案。
deep-neuroevolution - 深度神经网络进化算法的分布式实现
Deep NeuroevolutionGenetic AlgorithmsGithubMujocoOpenAI开源项目强化学习
本项目提供分布式深度神经网络训练的多种实现,包括深度遗传算法(DeepGA)和进化策略(ES),用于强化学习。基于并改进了OpenAI的代码,支持本地和AWS运行。项目还包括NeuroEvolution的视觉检测工具VINE和GPU优化加速。用户可通过Docker容器快速启动实验,并使用Mujoco进行高级实验。
lbann - 多层次并行化的高性能深度学习框架
GithubLBANN并行计算开源项目深度学习框架神经网络训练高性能计算
LBANN是一个开源的高性能深度学习训练框架,专注于多层次并行优化。它结合模型并行、数据并行和集成训练方法,高效处理大规模神经网络和海量数据。LBANN充分利用先进硬件资源,支持多种训练算法,包括监督、无监督、自监督和对抗性训练。该框架适用于需要高度可扩展性的深度学习研究和应用。
Neuralhub - 一体化神经网络开发与协作环境
AI工具AI研究Neuralhub协作平台深度学习神经网络
Neuralhub是面向AI爱好者、研究人员和工程师的一站式深度学习平台。它提供简化的神经网络开发环境,集成了从头构建网络的工具、丰富的预设组件库和高质量预训练模型。作为人工智能创新中心,Neuralhub不仅支持实验和技术突破,还培育了活跃的知识共享与协作社区。通过整合先进工具、前沿研究成果和海量模型资源,Neuralhub致力于让AI研究、学习和开发更加便捷高效,推动深度学习技术的普及与进步。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号