Project Icon

causallib

通过观察性数据的因果推断分析

Causallib是一个Python包,提供统一的因果推断方法,灵感来自scikit-learn API,支持复杂机器学习模型的集成。用户可以进行有适应性的模块化因果建模,提供更准确的效果估计。该包还包括评估工具,用于诊断模型表现差异,适用于各种治疗策略和潜在结果预测。研究人员可以使用causallib从现实世界的观察性数据中推断干预措施的因果影响,适用于医疗和社会科学等领域。更多信息请访问causallib文档。

tiny-random-LlamaForCausalLM - 轻量级随机初始化Llama模型框架
GithubHuggingFaceHuggingfaceLlamaForCausalLM人工智能开源项目机器学习模型语言模型
tiny-random-LlamaForCausalLM是一个轻量级的随机初始化Llama模型框架,为快速实验和测试而设计。这个简单框架使开发者能够迅速探索Llama架构,无需进行复杂的预训练。该项目主要面向研究人员和开发者,适用于了解Llama模型结构和进行快速原型设计。
saliency - 多种显著性方法及其性能评估的全面解析
GithubGrad-CAMIntegrated GradientsPerformance Information CurveSaliency LibrarySmoothGrad开源项目
库中包含多种显著性技术如Guided Integrated Gradients、XRAI和SmoothGrad的代码和示例,提供Performance Information Curve (PIC)用于质量评估。框架无关设计,可兼容多种机器学习平台,包括专注于TensorFlow的子包和丰富的使用案例。了解更多更新和详细解释请访问GitHub Pages网站。
dvclive - 简单易用的机器学习实验跟踪和指标记录工具
DVCLiveGithub实验比较开源项目指标记录数据版本控制机器学习
DVCLive是一个用于记录机器学习指标和元数据的Python库。它支持多种机器学习框架,无需额外服务,以纯文本文件存储实验结果,方便版本控制。DVCLive提供直观API,支持参数记录、指标跟踪和实验比较,有助于简化机器学习工作流程。
python-glmnet - Python实现的正则化回归库
GLMNETGithubPythonScikit-Learn开源项目机器学习正则化回归
python-glmnet是一个实现正则化回归模型的Python库。它封装了R语言glmnet包的Fortran库,提供线性和逻辑回归功能。该库兼容Scikit-Learn的API,支持稀疏矩阵,具有交叉验证和自动选择最佳正则化参数的功能。可通过conda或pip安装,适用于需要实现Lasso或ElasticNet回归的数据科学项目。
alibi-detect - 专注异常值、对抗性和漂移检测的开源Python库
Alibi DetectGithub对抗检测开源项目异常检测机器学习监控漂移检测
alibi-detect是一个开源的异常值、对抗性和漂移检测Python库。它为表格数据、文本、图像和时间序列提供在线和离线检测器。库中包含多种算法,如用于异常检测的孤立森林、马氏距离和自编码器,以及用于漂移检测的KS检验和MMD。alibi-detect兼容TensorFlow和PyTorch,并具有内置预处理功能,可检测各种类型的数据漂移。
yggdrasil-decision-forests - 用于训练、评估、解释和部署随机森林、梯度提升决策树和 CART 决策森林模型的完整库
CART决策森林GithubYDFYggdrasil Decision Forests开源项目梯度增强决策树随机森林
YDF 是一个用于训练、评估、解释和部署随机森林、梯度提升决策树和 CART 决策森林模型的完整库。支持 Python 和 C++ API,方便模型的训练、分析、预测及保存。详尽的文档和教程有助于用户快速入门,是开发高效、可解释机器学习模型的好工具。
implicit - 高性能Python隐式反馈协同过滤库
GithubPython库implicit协同过滤开源项目推荐系统矩阵分解
Implicit是一个开源的高性能Python协同过滤库,专为隐式反馈数据集设计。它实现了多种推荐算法,如交替最小二乘法、贝叶斯个性化排序等。支持多线程和GPU加速,适用于大规模数据处理。提供详细文档和示例,便于开发者快速构建推荐系统。
cleanlab - 开源工具自动检测和优化机器学习数据集
Githubcleanlab开源项目数据中心AI数据清理机器学习标签错误检测
cleanlab是一款开源的数据中心AI工具包,能够自动检测机器学习数据集中的标签错误、异常值和重复项等问题。该工具适用于图像、文本和表格等各类数据,并支持所有机器学习模型。除了发现数据问题,cleanlab还可以训练更稳健的模型,评估数据质量。基于可靠的理论基础,cleanlab运行高效,操作简便,是优化数据质量和提升模型性能的实用工具。
pykale - 改进多模态机器学习的高效绿色解决方案
GithubPyKale多模态学习开源项目机器学习深度学习迁移学习
PyKale通过简化数据、软件和用户之间的连接,使跨学科研究的机器学习更容易访问。它专注于多模态学习和迁移学习,支持图像、视频和图形的数据类型,涵盖深度学习和降维模型。PyKale遵循绿色机器学习理念,通过减少重复、再利用资源和回收学习模型,实现高效和可持续的研究。适用于生物信息学、图像和视频识别及医学成像,利用多源知识做出准确且可解释的预测。
skglm - 快速灵活的稀疏广义线性模型Python库
GLMGithubscikit-learnskglm开源项目机器学习稀疏模型
skglm是一个开源Python库,专为解决稀疏广义线性模型(GLMs)而设计。它提供快速估计器,完全兼容scikit-learn,并支持更多模型。其模块化设计允许用户自定义估计器,灵活性高。skglm在处理大型数据集时,性能最高可达scikit-learn的100倍。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号