Project Icon

efficient-kan

Kolmogorov-Arnold网络的高效实现方案

efficient-kan是一个开源项目,为Kolmogorov-Arnold神经网络(KAN)提供高效实现。项目重构了计算方法,大幅降低内存消耗并提升计算效率。通过采用权重L1正则化和可选的独立比例B样条功能,项目在保持兼容性的同时优化了性能。最新更新改进了参数初始化,在MNIST数据集上显著提升了模型表现。

sparsezoo - 高效稀疏神经网络模型库
GithubNeuralmagicSparseZoo开源项目模型库深度学习稀疏化模型
SparseZoo是一个不断扩展的神经网络模型库,包含高度稀疏和稀疏量化模型,以及相应的稀疏化配方。它简化并加速深度学习模型的开发,帮助实现高效推理。用户可以通过API或云端访问这些模型及其配方,并进行迁移学习或配方迁移。SparseZoo支持多种稀疏化算法和不同推理性能的模型,并提供全面的文档和社区支持。
lbann - 多层次并行化的高性能深度学习框架
GithubLBANN并行计算开源项目深度学习框架神经网络训练高性能计算
LBANN是一个开源的高性能深度学习训练框架,专注于多层次并行优化。它结合模型并行、数据并行和集成训练方法,高效处理大规模神经网络和海量数据。LBANN充分利用先进硬件资源,支持多种训练算法,包括监督、无监督、自监督和对抗性训练。该框架适用于需要高度可扩展性的深度学习研究和应用。
kanata - 跨平台键盘自定义工具
Github多层功能开源软件开源项目自定义配置跨平台键盘映射
Kanata是一款开源的跨平台键盘自定义工具。它支持多层键功能、高级按键行为定制和易读的配置文件。用户可以创建自定义键盘层,优化工作流程,提高打字效率。Kanata具有实时配置重载功能,便于调试。此外,它还可以运行TCP服务器,实现与其他程序的交互。无论是普通用户还是开发者,都能通过Kanata提升键盘使用体验。
efficientnetv2_rw_t.ra2_in1k - EfficientNet-v2的模型特点与应用分析
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
EfficientNet-v2是一个专注于图像分类的高效模型,采用RandAugment策略在ImageNet-1k数据集上训练,具有参数少、训练快的特点。通过timm库实现,支持特征图提取和图像嵌入等多种功能。其结构设计为强大的特征骨干提供了基础。
KoopmanLab - Koopman神经算子 高效求解非线性偏微分方程
GithubKoopmanLabKoopman神经算子偏微分方程开源项目机器学习物理方程求解
KoopmanLab是一个开源的Koopman神经算子包,基于PyTorch开发。该项目结合机器学习和动力系统理论,提供了一种无网格方法来求解非线性偏微分方程。KoopmanLab实现了多种模型,如KNO和ViT-KNO,并配备完整的数据处理、训练和测试工具。它可应用于Navier-Stokes方程和浅水方程等物理模拟场景,为研究人员提供了高效灵活的计算框架。
nanotron - 高效的大规模模型预训练库
GithubNanotronTransformer并行计算开源项目模型预训练深度学习
Nanotron是一个开源的Transformer模型预训练库。它提供灵活API,支持自定义数据集预训练。该库特点包括高性能、可扩展性强,支持3D并行、专家并行、AFAB和1F1B调度策略、ZeRO-1优化器等先进技术。Nanotron适用于大规模模型训练,旨在提高预训练效率。
Awesome-Efficient-LLM - 知识蒸馏、网络剪枝、量化和加速推理等针对大型语言模型优化的关键技术的汇总
GithubLarge Language Models开源项目效率优化模型剪枝知识蒸馏量化
Awesome-Efficient-LLM项目汇总了针对大型语言模型优化的关键技术,包括知识蒸馏、网络剪枝、量化和加速推理等,支持研究者和开发者获取最新的效率提升方法和学术文献。该平台定期更新,提供过去60天内的相关研究成果,便于用户系统地探索和应用这些高效技术。
neural-fortran - Fortran实现的开源并行深度学习框架
FortranGithubneural-fortran并行计算开源项目深度学习神经网络
neural-fortran是一个基于Fortran的开源深度学习框架,支持密集和卷积神经网络的训练与推理。该框架提供多种优化器和激活函数,支持从Keras HDF5文件加载模型,并实现数据并行。其特点包括高性能计算、易用性和可扩展性,适用于多种深度学习应用场景。
pykale - 改进多模态机器学习的高效绿色解决方案
GithubPyKale多模态学习开源项目机器学习深度学习迁移学习
PyKale通过简化数据、软件和用户之间的连接,使跨学科研究的机器学习更容易访问。它专注于多模态学习和迁移学习,支持图像、视频和图形的数据类型,涵盖深度学习和降维模型。PyKale遵循绿色机器学习理念,通过减少重复、再利用资源和回收学习模型,实现高效和可持续的研究。适用于生物信息学、图像和视频识别及医学成像,利用多源知识做出准确且可解释的预测。
Embedded-Neural-Network - 深度神经网络压缩与加速技术综述
Github剪枝开源项目模型量化硬件加速器神经网络压缩稀疏化
Embedded-Neural-Network项目汇集了减小深度神经网络模型大小和加速ASIC/FPGA应用的前沿研究。内容涵盖网络压缩、硬件加速等领域,包括参数共享、知识蒸馏、定点训练、稀疏正则化和剪枝等技术。项目还整理了相关教程和重要会议论文。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号