Project Icon

efficient-kan

Kolmogorov-Arnold网络的高效实现方案

efficient-kan是一个开源项目,为Kolmogorov-Arnold神经网络(KAN)提供高效实现。项目重构了计算方法,大幅降低内存消耗并提升计算效率。通过采用权重L1正则化和可选的独立比例B样条功能,项目在保持兼容性的同时优化了性能。最新更新改进了参数初始化,在MNIST数据集上显著提升了模型表现。

keras-tcn - 强化长记忆能力的时序卷积网络
GRUGithubKeras TCNLSTMTemporal Convolutional NetworkTensorFlow开源项目
该项目介绍了时序卷积网络(TCN)如何在长时间序列数据中替代LSTM/GRU并表现出更优异的性能。TCN提供更长的记忆能力、更稳定的梯度,同时支持并行处理和灵活的感受野。这些特性在人脸识别、添加任务、复制记忆任务和语言模型等任务中表现突出。用户可以通过本项目配置和运行TCN模型,探索其在不同任务中的应用潜力。
k2 - 高性能自动微分FSA/FST算法库 支持语音识别
CUDAGithubPyTorchk2开源项目有限状态自动机语音识别
k2是一个高性能的有限状态自动机(FSA)和有限状态转换器(FST)算法库,旨在与PyTorch和TensorFlow等自动微分工具包无缝集成。该库主要应用于语音识别领域,支持交叉熵、CTC和MMI等多种训练目标的融合,并能优化多阶段解码系统。k2基于C++和CUDA实现,提供高效并行计算,并与PyTorch深度集成,为语音识别技术的进一步发展提供了灵活而强大的框架。
kanidm - 全面高效的开源身份管理系统
GithubKanidmOAuth2WebAuthn开源项目认证服务身份管理
Kanidm是一个开源的身份管理系统,提供全面的认证和身份存储解决方案。支持WebAuthn、OAuth2/OIDC、应用门户、Linux/Unix集成等功能,适用于家庭到企业级的各种规模需求。通过严格默认设置、简单配置和自我修复机制,Kanidm实现了高效可靠的身份管理服务。
Hypernets - 自动机器学习通用框架 支持多种算法与优化技术
AutoMLGithubHypernets开源项目机器学习神经架构搜索超参数优化
Hypernets作为一个通用AutoML框架,能够为多种机器学习框架和库提供自动优化工具。它不仅支持TensorFlow、Keras、PyTorch等深度学习框架,还兼容scikit-learn、LightGBM、XGBoost等机器学习库。该框架集成了多种先进的单目标和多目标优化算法,并引入抽象搜索空间表示,满足超参数优化和神经架构搜索的需求,从而适应各类自动机器学习场景。
katana - 下一代高效网络爬虫与数据采集框架
GithubKatanaWeb抓取开源项目爬虫框架网络安全自动化
Katana是一款基于Go语言开发的高性能网络爬虫框架,专为自动化流程设计。它支持无头和有头两种爬取模式,能够解析JavaScript、自动填充表单,并提供精确的范围控制。Katana具有多样化的输入输出选项,高度可配置,适用于各类网络数据采集任务。其灵活架构使其成为执行复杂爬取任务的理想工具。
Adam-mini - 减少内存消耗并提升模型效能的高效优化器
Adam-miniGithub优化器内存效率分布式训练开源项目深度学习
Adam-mini是一种新型优化器,通过创新的参数分块和学习率分配方法,将内存占用比AdamW降低45%到50%,同时维持或提高模型性能。它支持多种分布式框架,可用于预训练、监督微调和RLHF等任务。Adam-mini基于Hessian结构相关原则,为大规模模型训练提供了高效解决方案。
finn - 高效量化神经网络加速器框架,助力FPGA上的AI推理
FINNFPGAGithub开源项目数据流架构深度学习推理量化神经网络
FINN是一个开源实验框架,专注于FPGA上的量化神经网络推理。它为每个网络生成定制的数据流式架构,实现高效、高吞吐量和低延迟的FPGA加速器。FINN提供跨软硬件抽象层的灵活性,支持深度神经网络研究,并通过Docker提供编译器环境和丰富的文档资源。
frugally-deep - 在C++中运行Keras模型,无需依赖TensorFlow的小型的头文件库
C++GithubKerasTensorFlowfrugally-deep开源项目模型预测
frugally-deep是一个小型的头文件库,允许在C++中运行Keras模型进行预测而无需依赖TensorFlow。它依赖于FunctionalPlus、Eigen和json头文件库,支持复杂的模型拓扑,并显著减小二进制大小。项目特点包括支持多种层类型、节省RAM以及通过并行处理提高预测性能。frugally-deep在单核CPU上表现相对较快,适合内存敏感和需要快速部署的应用。
wanda - 基于权重和激活的大型语言模型剪枝技术
GithubLLM剪枝Wanda开源项目权重激活模型压缩稀疏性
Wanda是一种针对大型语言模型(LLM)的剪枝技术,通过结合权重大小和输入激活范数来选择性移除权重。相比传统的仅基于权重大小的剪枝方法,Wanda展现出更高的效率。该技术支持LLaMA、LLaMA-2等多种模型,可实现非结构化和结构化稀疏。Wanda方法简单实用,在维持模型性能的同时有效降低参数量,为LLM的轻量化和优化开辟了新途径。
MNN - 高效轻量的深度学习框架,支持多设备推理和训练
GithubMNN开源项目推理引擎深度学习框架轻量级高性能
MNN是一个高效轻量的深度学习框架,支持设备上的推理和训练。已被阿里巴巴30多个应用集成,覆盖直播、短视频、搜索推荐等70多种场景。MNN适用于嵌入式设备,支持TensorFlow、Caffe、ONNX等多种模型格式,并优化了ARM和x64 CPU及多种GPU的计算性能。通过MNN Workbench,用户可以下载预训练模型、进行可视化训练并一键部署到设备上。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号