Project Icon

ComfyUI_Cutoff

ComfyUI精确控制提示词影响范围的插件

ComfyUI_Cutoff插件通过四个新节点实现提示词的精确控制。它允许用户定义影响区域、设置目标词和调整权重,从而限制特定属性对提示词子集的影响。这种方法特别适用于处理'蓝色头发,黄色眼睛'等复杂提示词,确保属性准确应用到相应对象。通过提供更细致的提示词调整能力,该插件有助于生成更符合预期的图像。

Cutoff for ComfyUI

screenshot of workflow

what is cutoff?

cutoff is a script/extension for the Automatic1111 webui that lets users limit the effect certain attributes have on specified subsets of the prompt. I.e. when the prompt is a cute girl, white shirt with green tie, red shoes, blue hair, yellow eyes, pink skirt, cutoff lets you specify that the word blue belongs to the hair and not the shoes, and green to the tie and not the skirt, etc. This is an implementation of cutoff in the form of 3 nodes that can be used in ComfyUI.

how does this work?

When you provide stable diffusion with some text, that text gets tokenized and CLIP creates a vector (embedding) for each token in the text. So if we have a prompt containing "blue hair, yellow eyes" some of the vectors coming out of CLIP will correspond to the "blue hair" part, and some to the "yellow eyes". When CLIP does this it tries to take the context of the entire sentence into consideration. Unfortunately CLIP isn't always as great at figuring out that the "blue" in "blue hair" should really only modify the noun "hair" and not the noun "eyes" a bit further in the sentence.

So how do we deal with this? we can mask out the tokens corresponding to "blue" and ask CLIP to create another embedding. In this new embedding we have a set of vectors corresponding to "yellow eyes" that are not affected by "blue", because blue wasn't part of the tokens. If we then take the difference between our original vectors and these new vectors we now have a direction we can travel in for the eyes to become more affected by "yellow" and less by "blue". If we do this for all the color relations in text we can travel to an embedding where each of these relations are more isolated. Of course this effect isn't limited to just colors.

ComfyUI nodes

To achieve all of this, the following 4 nodes are introduced:

Cutoff BasePrompt: this node takes the full original prompt

Cutoff Set Region: this node sets a "region" of influence for specific target words, and comes with the following inputs:

  • region_text: defines the set of tokens that the target words should affect, this should be a part of the original prompt. It is possible to define multiple regions in a single CLIPSetRegion node by stating every region on a new line.
  • target_text: defines the set of tokens that will be masked off (i.e. the tokens we wish to limit to the region) this is a space separated list of words. If you want to match a sequence of words use underscores instead of spaces, e.g. "a_series_of_connected_tokens". If you want to match a word that actually contains underscores escape the underscore, e.g. "the\_target\_tokens". You can target textual inversion embeddings using the default syntax but do note that any underscores in the name of the embedding have to be escaped in this input field.
  • weight: how far to travel in the direction of the isolated vector

Cutoff Regions To Conditioning: this node converts the base prompt and regions into an actual conditioning to be used in the rest of ComfyUI, and comes with the following inputs:

  • mask_token: the token to be used for masking. If left blank it will default to the <endoftext> token. If the string converts to multiple tokens it will give a warning in the console and only use the first token in the list.
  • strict_mask: When 0.0 the specified target tokens will not affect the other specified areas but do affect anything outside of those areas. When set to 1.0 the specified target tokens will only affect their own region.
  • start_from_masked: When 0.0 the starting point to travel from is the original prompt. When set to 1.0 the starting point to travel from is the completely masked off prompt. Note that specifically when all region weights are 1.0 there is no difference between the two

Cutoff Regions To Conditioning (ADV): provides the same functionality as the above node but also provides options on how to interpret prompt weighting. More on these settings can be found here.

You can find these nodes under conditioning>cutoff

SDXL

The nodes won't throw any errors when used with SDXL, but at least for 0.9 I didn't found it to be working that well.

Finally, Here are some example images that you can load into ComfyUI:

first example generation of a cute girl, white shirt with green tie, red shoes, blue hair, yellow eyes, pink skirt using cutoff first example generation of a cute girl, white shirt with green tie, red shoes, blue hair, yellow eyes, pink skirt using cutoff first example generation of a cute girl, white shirt with green tie, red shoes, blue hair, yellow eyes, pink skirt using cutoff first example generation of a cute girl, white shirt with green tie, red shoes, blue hair, yellow eyes, pink skirt using cutoff

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号