Project Icon

Awesome-Multimodal-Large-Language-Models

多模态大语言模型研究资源与最新进展汇总

该项目汇总了多模态大语言模型(MLLMs)领域的最新研究成果,包括论文、数据集和评估基准。涵盖多模态指令微调、幻觉、上下文学习等方向,提供相关代码和演示。项目还包含MLLM调查报告及MME、Video-MME等评估基准,为研究人员提供全面参考。

Awesome-Multimodal-Large-Language-Models

Our MLLM works

🔥🔥🔥 A Survey on Multimodal Large Language Models
Project Page [This Page] | Paper

The first comprehensive survey for Multimodal Large Language Models (MLLMs). :sparkles:

Welcome to add WeChat ID (wmd_ustc) to join our MLLM communication group! :star2:


🔥🔥🔥 VITA: Towards Open-Source Interactive Omni Multimodal LLM

[2024.08.12] We are announcing VITA, the first-ever open-source Multimodal LLM that can process Video, Image, Text, and Audio, and meanwhile has an advanced multimodal interactive experience. 🌟

Omni Multimodal Understanding. VITA demonstrates robust foundational capabilities of multilingual, vision, and audio understanding, as evidenced by its strong performance across a range of both unimodal and multimodal benchmarks. ✨

Non-awakening Interaction. VITA can be activated and respond to user audio questions in the environment without the need for a wake-up word or button. ✨

Audio Interrupt Interaction. VITA is able to simultaneously track and filter external queries in real-time. This allows users to interrupt the model's generation at any time with new questions, and VITA will respond to the new query accordingly. ✨


🔥🔥🔥 Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis

[2024.06.03] We are very proud to launch Video-MME, the first-ever comprehensive evaluation benchmark of MLLMs in Video Analysis! 🌟

It applies to both image MLLMs, i.e., generalizing to multiple images, and video MLLMs. Our leaderboard involes SOTA models like Gemini 1.5 Pro, GPT-4o, GPT-4V, LLaVA-NeXT-Video, InternVL-Chat-V1.5, and Qwen-VL-Max. 🌟

It includes both short- (< 2min), medium- (4min~15min), and long-term (30min~60min) videos, ranging from 11 seconds to 1 hour. ✨

All data are newly collected and annotated by humans, not from any existing video dataset. ✨


🔥🔥🔥 MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models
Project Page [Leaderboards] | Paper | :black_nib: Citation

A comprehensive evaluation benchmark for MLLMs. Now the leaderboards include 50+ advanced models, such as Qwen-VL-Max, Gemini Pro, and GPT-4V. :sparkles:

If you want to add your model in our leaderboards, please feel free to email bradyfu24@gmail.com. We will update the leaderboards in time. :sparkles:

Download MME :star2::star2:

The benchmark dataset is collected by Xiamen University for academic research only. You can email yongdongluo@stu.xmu.edu.cn to obtain the dataset, according to the following requirement.

Requirement: A real-name system is encouraged for better academic communication. Your email suffix needs to match your affiliation, such as xx@stu.xmu.edu.cn and Xiamen University. Otherwise, you need to explain why. Please include the information bellow when sending your application email.

Name: (tell us who you are.)
Affiliation: (the name/url of your university or company)
Job Title: (e.g., professor, PhD, and researcher)
Email: (your email address)
How to use: (only for non-commercial use)


📑 If you find our projects helpful to your research, please consider citing:

@article{fu2023mme,
  title={MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models},
  author={Fu, Chaoyou and Chen, Peixian and Shen, Yunhang and Qin, Yulei and Zhang, Mengdan and Lin, Xu and Yang, Jinrui and Zheng, Xiawu and Li, Ke and Sun, Xing and others},
  journal={arXiv preprint arXiv:2306.13394},
  year={2023}
}

@article{fu2024vita,
  title={VITA: Towards Open-Source Interactive Omni Multimodal LLM},
  author={Fu, Chaoyou and Lin, Haojia and Long, Zuwei and Shen, Yunhang and Zhao, Meng and Zhang, Yifan and Wang, Xiong and Yin, Di and Ma, Long and Zheng, Xiawu and He, Ran and Ji, Rongrong and Wu, Yunsheng and Shan, Caifeng and Sun, Xing},
  journal={arXiv preprint arXiv:2408.05211},
  year={2024}
}

@article{fu2024video,
  title={Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis},
  author={Fu, Chaoyou and Dai, Yuhan and Luo, Yondong and Li, Lei and Ren, Shuhuai and Zhang, Renrui and Wang, Zihan and Zhou, Chenyu and Shen, Yunhang and Zhang, Mengdan and others},
  journal={arXiv preprint arXiv:2405.21075},
  year={2024}
}

@article{yin2023survey,
  title={A survey on multimodal large language models},
  author={Yin, Shukang and Fu, Chaoyou and Zhao, Sirui and Li, Ke and Sun, Xing and Xu, Tong and Chen, Enhong},
  journal={arXiv preprint arXiv:2306.13549},
  year={2023}
}


Table of Contents


Awesome Papers

Multimodal Instruction Tuning

TitleVenueDateCodeDemo
Star
mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models
arXiv2024-08-09Github-
Star
VITA: Towards Open-Source Interactive Omni Multimodal LLM
arXiv2024-08-09Github-
Star
LLaVA-OneVision: Easy Visual Task Transfer
arXiv2024-08-06GithubDemo
Star
MiniCPM-V: A GPT-4V Level MLLM on Your Phone
arXiv2024-08-03GithubDemo
VILA^2: VILA Augmented VILAarXiv2024-07-24--
SlowFast-LLaVA: A Strong Training-Free Baseline for Video Large Language ModelsarXiv2024-07-22--
EVLM: An Efficient Vision-Language Model for Visual UnderstandingarXiv2024-07-19--
Star
InternLM-XComposer-2.5: A Versatile Large Vision Language Model Supporting Long-Contextual Input and Output
arXiv2024-07-03GithubDemo
Star
OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding
arXiv2024-06-27GithubLocal Demo
Star
Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs
arXiv2024-06-24GithubLocal Demo
Star
Long Context Transfer from Language to Vision
arXiv2024-06-24GithubLocal Demo
Star
Unveiling Encoder-Free Vision-Language Models
arXiv2024-06-17GithubLocal Demo
Star
Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models
arXiv2024-06-12Github-
Star
VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs
arXiv2024-06-11GithubLocal Demo
Star
Parrot: Multilingual Visual Instruction Tuning
arXiv2024-06-04Github-
Star
Ovis: Structural Embedding Alignment for Multimodal Large Language Model
arXiv2024-05-31Github-
Star
Matryoshka Query Transformer for Large Vision-Language Models
arXiv2024-05-29GithubDemo
Star
ConvLLaVA: Hierarchical Backbones as Visual Encoder for Large Multimodal Models
arXiv2024-05-24Github-
Star
Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models
arXiv2024-05-24GithubDemo
Star
[**Libra: Building Decoupled
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号