Project Icon

Woodpecker

专门用于校正多模态大语言模型中的幻觉现象的方法

Woodpecker是一种创新方法,专门用于校正多模态大语言模型中的幻觉现象。与依赖重训练数据的传统方法不同,Woodpecker通过关键概念提取、问题制定、视觉知识验证、视觉声明生成和幻觉校正五个阶段实现训练无关的校正。这种方法适应性广泛,可解释性强,并在POPE基准测试中显著提高模型准确性。用户可以通过在线演示平台体验Woodpecker的功能。更多信息请参考我们的arXiv论文或在线Demo。

mPLUG-Owl - 模块化多模态大型语言模型
CVPR 2024GithubmPLUG-OwlmPLUG-Owl2多模态大语言模型开源项目模块化
mPLUG-Owl系列模型通过模块化强化其多模具集成,提升大型语言模型的功能。mPLUG-Owl2在CVPR 2024获得突出展示,而最新的mPLUG-Owl2.1则针对中文模式进行了优化,已在HuggingFace平台推出。
mPLUG-DocOwl - 多模态大语言模型实现无OCR文档理解的新突破
AI图表分析DocOwlGithubOCR-free多模态大语言模型开源项目文档理解
mPLUG-DocOwl是阿里巴巴集团开发的多模态大语言模型家族,致力于无OCR文档理解。该项目包含DocOwl1.5、TinyChart和PaperOwl等子项目,覆盖文档分析、图表理解和科学图表分析领域。mPLUG-DocOwl在多项基准测试中展现出卓越性能,推动文档智能处理技术进步。
Macaw-LLM - 多模态数据与语言模型的前沿整合技术
GithubMacaw-LLM图像集成多模态语言模型开源项目文本处理视频处理
Macaw-LLM项目通过整合图像、视频、音频和文本数据,创新了多模态语言建模。该项目基于CLIP、Whisper和LLaMA等先进模型,实现了高效的数据对齐和一步到位的指令微调,创建了丰富的多模态指令数据集,涵盖多种任务。项目强调简单快速的对齐策略,展示出强大的多模态处理能力,有效提升了跨模态数据的解析和理解。
OPERA - 无需额外训练的多模态大语言模型幻觉缓解技术
GithubOPERA回顾分配策略多模态大语言模型幻觉缓解开源项目过度信任惩罚
OPERA是一种新型多模态大语言模型解码方法,通过引入过度信任惩罚和回顾分配策略缓解幻觉问题。该方法无需额外数据或训练,仅在beam search解码时添加惩罚项和回滚机制,即可改善模型知识聚合模式。实验表明,OPERA在多个模型和评估指标上均显著提升性能,展现出良好的有效性和通用性。这为提高多模态大语言模型在实际应用中的准确性提供了一种低成本解决方案。
RLHF-V - 通过细粒度反馈优化多模态大语言模型
GithubRLHF-V人类反馈多模态大语言模型幻觉减少开源项目行为对齐
RLHF-V框架通过细粒度的人类纠正反馈来优化多模态大语言模型的行为。该项目收集高效的纠正反馈数据,让标注者修正模型回答中的幻觉片段。实验表明,仅需1小时训练即可将基础模型的幻觉率降低34.8%。RLHF-V在Muffin模型上的验证展示了显著的性能提升,有效提高了模型的可信度。
llm-hallucination-survey - 大语言模型幻觉问题研究综述
Github事实一致性大语言模型幻觉开源项目自相矛盾评估
该项目全面调查了大语言模型中的幻觉问题,涵盖评估方法、成因分析和缓解策略。研究包括输入冲突、上下文冲突和事实冲突等多种幻觉类型,并汇总了相关学术文献。项目成果有助于提升大语言模型在实际应用中的可靠性,为该领域的研究和开发提供重要参考。
Owl - 融合可穿戴设备和AI的项目
AIGithubOwl人机交互可穿戴设备开源项目智能助手
Owl是一个融合可穿戴设备和AI的项目,旨在通过始终在线的设备实现记忆增强、主动生活协助和知识收集。支持多种设备、多模态捕捉和多种连接方式,用户能够随时随地与AI互动。主要特点包括灵活的推理选项、多平台捕捉、语音验证以及支持流媒体和离线模式,助力用户提高生产力、增强自我理解并促进人机互动。
MockingBird - 全面支持中文的语音克隆与合成解决方案
GithubMockingBirdPyTorch中文支持开源项目热门训练模型音频合成
MockingBird项目是一款支持中文的语音克隆工具,支持多数据集和各种操作系统,包括Windows和Linux,甚至M1 MACOS。该项目利用最新的PyTorch技术,提供易于使用的界面和高效的处理能力,只需训练新的合成器即可实现令人印象深刻的效果。此外,该项目还提供了Web服务器功能,允许远程调用。是否需要定制语音合成解决方案,MockingBird都能满足您的需求。
Otter - 基于MIMIC-IT数据集和OpenFlamingo的多模态模型
GithubMIMIC-ITOtter多模态开源项目指令微调视觉语言处理
该项目结合了OpenFlamingo模型和MIMIC-IT数据集进行多模态指令调优,拥有280万条指令-响应对,支持图像和视频内容的精确理解与互动。该项目还包括OtterHD模型,提升高分辨率视觉输入的细粒度解释,并推出MagnifierBench评估基准测试模型的微小物体识别能力。公开的代码可用于训练和预训练,并支持GPT4V的评估和Flamingo架构的多任务处理。
magpie - 利用提示对齐的语言模型从零生成高质量对齐数据
GithubHuggingfaceLLMMagpie对齐数据开源项目数据生成
Magpie 项目通过提示对齐的大型语言模型生成高质量的对齐数据,无需提示工程或种子问题。该方法通过对齐模型的预查询模板生成用户查询和响应,已在Llama-3、Qwen2、Phi 3 和 Gemma-2系列模型上测试。最新更新包括多款增强中文问答能力和推理能力的数据集。项目开放这些高质量数据,推动AI民主化,提升模型对齐过程的透明度。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号