Project Icon

distilbert-base-uncased-go-emotions-onnx

优化为ONNX格式的轻量级情感分析模型

该模型是基于distilbert-base-uncased架构,通过零样本蒸馏技术在GoEmotions数据集上训练的情感分类工具。经ONNX格式转换和量化处理,模型性能得到显著提升。这一创新方法展示了如何将复杂的NLI零样本模型简化为高效的学生模型,实现了仅依靠未标记数据即可训练分类器的技术突破。尽管在精度上可能略逊于全监督模型,但为处理无标签数据的情感分析任务提供了实用解决方案。

distilbert-base-multilingual-cased - 提升效率的多语言轻量级BERT模型,支持104种语言
DistilBERTGithubHuggingface多语言模型开源项目模型维基百科自然语言处理迁移学习
distilbert-base-multilingual-cased是BERT基础多语言模型的轻量级版本,支持104种语言。该模型包含6层、768维度和12个头,总参数量为1.34亿。它在多语言维基百科数据上预训练,适用于掩码语言建模和各种下游任务的微调。与原版相比,这个模型在保持性能的同时将运行速度提高了一倍,为多语言自然语言处理任务提供了更高效的解决方案。
bge-large-en-v1.5-quant - 量化ONNX模型增强句子编码效率和性能
DeepSparseGithubHuggingfaceSparsify嵌入开源项目推理模型量化
该量化ONNX模型旨在利用DeepSparse加速bge-large-en-v1.5嵌入模型,提升句子编码效率。通过Sparsify实现的INT8量化和深度稀疏技术,在标准笔记本和AWS实例上分别实现了4.8倍和3.5倍的延迟性能改善。在多个数据集的测试中,该模型在分类和STS任务中展现出较高的编码效率。结合DeepSparse和ONNX技术栈,该模型适用于需要高效自然语言处理的应用场景。
wav2vec2-lg-xlsr-en-speech-emotion-recognition - 微调Wav2Vec 2.0实现高精度语音情感识别
GithubHuggingfaceRAVDESS数据集Wav2Vec 2.0开源项目微调模型深度学习语音情感识别
项目利用微调技术优化wav2vec2-large-xlsr-53-english模型,在RAVDESS数据集上训练出准确率达82.23%的语音情感识别系统。该模型可辨别8种情感状态,包括愤怒、平静和厌恶等。这一成果为语音情感分析、人机交互和情感计算领域的研究提供了新的思路和实践参考。
distilroberta-base - DistilRoBERTa:轻量高效的英语语言模型
DistilRoBERTaGithubHuggingface开源项目机器学习模型模型蒸馏自然语言处理语言模型
DistilRoBERTa-base是RoBERTa-base的精简版本,采用与DistilBERT相同的蒸馏技术。模型包含6层结构,768维向量和12个注意力头,总参数量为8200万,比原版减少33%。在保持相近性能的同时,处理速度提升一倍。主要应用于序列分类、标记分类和问答等下游任务的微调。该模型在英语处理上表现优异,但使用时需注意其可能存在的偏见和局限性。
hubert-large-speech-emotion-recognition-russian-dusha-finetuned - HuBERT模型在俄语语音情感识别上的应用与优化
GithubHuBERTHuggingface俄语开源项目微调模型语音情感识别预训练模型
该项目利用DUSHA数据集对HuBERT模型进行微调,实现了俄语语音情感识别。经优化后的模型在测试集上表现突出,准确率达0.86,宏F1分数为0.81,超越了数据集基准。模型能够识别中性、愤怒、积极、悲伤等情绪类型。项目还提供了简洁的使用示例代码,便于研究人员和开发者将其集成到语音情感分析任务中。
emotion2vec - 通用语音情感表示模型开源实现
Githubemotion2vec开源项目情感表征特征提取自监督预训练语音情感识别
emotion2vec是一个开源的语音情感表示模型,采用自监督预训练方法提取跨任务、跨语言和跨场景的通用情感特征。该模型在IEMOCAP等数据集上取得了领先性能,并在多语言和多任务上展现出优异表现。项目开源了预训练模型、特征提取工具和下游任务训练脚本,为语音情感分析研究提供了有力支持。
twitter-roberta-base-emotion-multilabel-latest - 精确识别推文情绪的多标签分类模型
GithubHuggingfacetweetnlptwitter-roberta-base-emotion-multilabel-latest多标签分类开源项目情感分析机器学习模型
该项目微调了cardiffnlp/twitter-roberta-base-2022-154m模型,专注于SemEval 2018情感分析任务,显著增强推文的多标签情绪分类能力。模型在测试集上的F1 micro为0.7169,F1 macro为0.5464,是推文情感分析的理想选择。适用于tweetnlp和transformers中的文本分类任务,支持通过Python加载工具进行灵活使用,有助于社交媒体情感解析。
distilbert-base-turkish-cased - 轻量级高性能土耳其语BERT模型
BERTGithubHuggingface土耳其语言模型开源项目模型模型蒸馏深度学习自然语言处理
distilbert-base-turkish-cased是一个开源的土耳其语蒸馏BERT模型,通过知识蒸馏技术在保持与原始BERTurk相近性能的同时显著降低了模型规模。该模型在词性标注等任务上表现出色,超越了更大规模的XLM-RoBERTa模型,适用于土耳其语文本分类、命名实体识别等多种自然语言处理任务。
distilbart-mnli-12-3 - 高效简化的零样本分类模型
DistilBart-MNLIGithubHuggingfaceNo Teacher Distillation开源项目性能表现模型模型微调
distilbart-mnli项目是利用No Teacher Distillation技术实现的bart-large-mnli的精简版,着重于零样本分类应用。该模型在保留主要性能的基础上,匹配准确度接近90%。通过复制bart-large-mnli的交替层并在同一数据集上进行微调,模型不断优化提升。用户可按照简单步骤进行微调,实现卓越的分类效果。
distilroberta-finetuned-financial-news-sentiment-analysis - DistilRoBERTa模型实现高精度金融新闻情感分析
DistilRobertaGithubHuggingface开源项目机器学习模型自然语言处理金融情感分析金融新闻
这是一个基于distilroberta-base微调的金融新闻情感分析模型。它在金融短语库数据集上训练,达到98.23%的准确率。模型结构包含6层、768维和12个注意力头,共8200万参数,运行速度是RoBERTa-base的两倍。该模型能够有效分析金融新闻的情感倾向,为金融分析和决策提供参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号